Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oqpo Paparazin
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 21:59

1: Xét ΔOMB và ΔONA có 

OM=ON

\(\widehat{BOM}\) chung

OB=OA

Do đó: ΔOMB=ΔONA

Suy ra: \(\widehat{OMB}=\widehat{ONA}\)

mà \(\widehat{OMB}+\widehat{AMI}=180^0\)

và \(\widehat{ONA}+\widehat{BNI}=180^0\)

nên \(\widehat{AMI}=\widehat{BNI}\)

2: Ta có: OM+MA=OA

ON+NB=OB

mà OM=ON

và OA=OB

nên MA=NB

Xét ΔIAM và ΔIBM có 

\(\widehat{IAN}=\widehat{IBN}\)(ΔONA=ΔOMB

MA=NB

\(\widehat{AMI}=\widehat{BNI}\)

Do đó: ΔIAM=ΔIBN

Hoàng Phương Minh
Xem chi tiết
nguyen minh huyen
Xem chi tiết
nguyen minh huyen
4 tháng 1 2020 lúc 10:27

Mình đang cần vô cùng gấp bạn nào làm nhanh mình k đúng luôn nha

Khách vãng lai đã xóa
giúp mình
Xem chi tiết
Ngô Thị Thùy Tiên
Xem chi tiết
Trần Quyền
Xem chi tiết

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: Xét ΔOBD có \(\dfrac{OA}{OB}=\dfrac{OC}{OD}\)

nên AC//BD

c: Ta có: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{DAB}=\widehat{DCB}\)

Ta có: OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔMAB và ΔMCD có

\(\widehat{MAB}=\widehat{MCD}\)

AB=CD

\(\widehat{MBA}=\widehat{MDC}\)

Do đó: ΔMAB=ΔMCD

=>MB=MD

Xét ΔOMB và ΔOMD có

OM chung

MB=MD

OB=OD

Do đó: ΔOMB=ΔOMD

=>\(\widehat{BOM}=\widehat{DOM}\)

=>\(\widehat{xOM}=\widehat{yOM}\)

=>OM là phân giác của góc xOy

d: Ta có: OB=OD

=>O nằm trên đường trung trực của BD(1)

Ta có: MB=MD

=>M nằm trên đường trung trực của BD(2)

Ta có: NB=ND

=>N nằm trên đường trung trực của BD(3)

Từ (1),(2),(3) suy ra O,M,N thẳng hàng

Liễu Lê thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 21:11

1: Xét ΔOMA và ΔOMB có 

OM chung

MA=MB

OA=OB

Do đó: ΔOMA=ΔOMB

Trang Vũ
Xem chi tiết
Kaarthik001
20 tháng 12 2023 lúc 21:10

a) Gọi \( \angle OAN = \angle OBM = \alpha \) (do chúng cùng nằm giữa OA và OB).
Ta có \( \angle OAB = \angle OBA \) (do OA > OB) và \( \angle OAN + \angle OAB = \angle OBM + \angle OBA = 180^\circ \).

Do đó, theo Định lý cạnh-góc-cạnh, ta có \( \triangle OAN \) đồng dạng với \( \triangle OBM \).

b) Gọi \( \angle AMN = \angle BNM = \beta \) (do chúng cùng nằm giữa AM và BN).
Ta có \( \angle AMB = \angle ANB \) (do \( \triangle OAN \) đồng dạng với \( \triangle OBM \)) và \( \angle AMN + \angle AMB = \angle BNM + \angle ANB = 180^\circ \).

Do đó, theo Định lý cạnh-góc-cạnh, ta có \( \triangle AMN \) đồng dạng với \( \triangle BNM \).

TrầnqDung
Xem chi tiết