Tính chiều cao hình thang cân ABCD , biết rằng cạnh bên AD= 5cm, có cạnh đáy AB = 6cm và CD = 14cm
Tính chiều cao của hình thang cân ABCD, biết rằng cạnh bên AD = 5cm, cạnh đáy AB = 6cm và CD = 14cm.
Kẻ AH ⊥ CD, BK ⊥ CD thì AH//BK nên hình thang ABKH có hai cạnh bên song song.
Áp dụng tính chất của hình thang ABKH có hai cạnh bên song song, ta có:
Áp dụng định lí Py – ta – go vào tam giác ADH vuông tại H ta được:
Vậy chiều cao của hình thang cân là 3cm.
1, Cho hình thang cân ABCD có đáy nhỏ AB, đường cao AH=2cm. Biết HC=3,5cm và HD=1,5cm. Tính chu vi của hình thang này 2, Cho hình thang cân ABCD có cạnh bên AD=5cm, các cạnh đáy AB=6cm và CD=14cm. Tính chiều cao của hình thang. XIN HÃY GIÚP MÌNH Ạ, xin cảm ơn 🌹❤️
Bài 1:Tính chiều cao hình thang cân ABCD biết cạnh bên AD=5cm,cạnh đáy AB=6cm và CD=14cm
Bài 2: cho hình thang cân ABCD có I là giao điểm của 2 đường chéo.Chứng minh:IC=ID,IA=IB
Tính diện tích của hình được cho trong mỗi trường hợp sau :
a) Hình thang ABCD, đáy lớn AB = 10cm, đáy nhỏ CD = 6cm và đường cao DE = 5cm
b) Hình thang cân ABCD, đáy nhỏ CD = 6cm, đường co DH = 4cm và cạnh bên AD = 5cm
a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)
b) Xem hình vẽ
Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)
Vì ABCD là hình thang cân nên AE = FB = 3.
Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)
1. Cho hình thang cân ABCD có đáy nhỏ CD = 6cm, đường cao DH = 4cm, cạnh bên AD = 5cm. Tính SABCD
2. Tìm diện tích hình thang ABCD có 2 đáy là 7cm và 9cm, cạnh bên AD hợp với BC một góc bằng 30o
1. Tính được AH=3cm theo định lý Pitago, vẽ đường cao CK (K thuộc AB), tính được BK=3cm nên HK=6cm nên AB=12cm, lúc đó sẽ tinhd được diện tích hình thang
2. Tương tự
Cho hình thang cân abcd có đáy Ab=3cm đáy cd=5cm và cạnh bên aD=4cm tính chu vi hình thang cân abcd?
Chu vi hình thang cân là:
3+5+4+4=16(cm)
Đ/S:...
Vì ABCD là hình thang cân
=> AD = BC = 4cm
Chu vi hình thang cân ABCD là : 3+4+5+4=16 (cm)
Giải
Chu vi hình thang cân là :
3 + 5 + 4 + 4 = 16 ( cm )
Đáp số : 16 cm
AB=CD-6=16-6=10(cm)
\(AD=\dfrac{AB}{2}=5\left(cm\right)\)
Vì ABCD là hình thang cân
nên \(AD=BC=5\left(cm\right)\)
Chu vi hình thang cân ABCD là:
\(AB+AD+CD+BC=5+5+10+16=36\left(cm\right)\)
Diện tích hình thang cân ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\cdot\left(10+16\right)=2\cdot26=52\left(cm^2\right)\)
Cạnh AB dài:
16 - 6 = 10 (cm)
Cạnh AD dài:
10 : 2 = 5 (cm)
Chu vi hình thang cân ABCD:
16 + 10 + 5 + 5 = 36 (cm)
Diện tích hình thang:
(16 + 10) × 4 : 2 = 52 (cm²)
Cho hình thang cân ABCD có chu vi bằng 56cm, độ dài cạnh bên AB=5cm, chiều cao =4cm. Tính diện tích hình thang cân đó
Tính diện tích của hình được cho trong mỗi trường hợp sau: Hình thang cân ABCD, đáy nhỏ CD = 6cm, đường cao DH = 4cm và cạnh bên AD = 5cm.
Xét hình thang cân ABCD có AB // CD
Đáy nhỏ CD = 6cm, cạnh bên AD = 5cm
Đường cao DH = 4cm. Kẻ CK ⊥ AB
Ta có tứ giác CDHK là hình chữ nhật
HK = CD = 6cm
△ AHD vuông tại H. Theo định lý Pi-ta-go ta có: A D 2 = A H 2 + D H 2
⇒ A H 2 = A D 2 - D H 2 = 5 2 - 4 2 = 25 – 16 = 9 ⇒ AH = 3cm
Xét hai tam giác vuông DHA và CKB :
∠ (DHA)= ∠ (CKB)= 90 0
AD = BC (tính chất hình thang cân)
∠ A = ∠ B(gt)
Do đó: △ DHA = △ CKB (cạnh huyền, góc nhọn)
⇒ KB = AH = 3 (cm)
AB = AH + HK + KB = 3 + 6 + 3 = 12 (cm)
S A B C D = (AB + CD) / 2. DH = (12 + 6) / 2. 4 = 36( c m 2 )
Tính diện tích hình thang cân đáy nhỏ CD =6cm, đường cao DE =5cm và cạnh bên AD =5cm.