Phân tích đa thức thành nhân tử:
a) x2 -3xy+x-3y
b) x2-25+9y2-6xy
c) x2-3x-10
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
1) Phân tích đa thức thành nhân tử:
a) 6x2 – 9xy
b) x2 – 10x – 9y2 + 25
c) 3x2 – 3xy -2x + 2y
2) Chứng minh x2 – 6x + 10x > 0 với mọi số thực x.
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
Phân tích đathức thành nhân tử:
a) x2 − 9y2 − x + 3y
b) 125x3 − 150x2+ 60x −8
a: \(x^2-9y^2-x+3y\)
\(=\left(x-3y\right)\left(x+3y\right)-\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-1\right)\)
a) \(x^2-9y^2-x+3y=\left(x-3y\right)\left(x+3y\right)-\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-1\right)\)
b) \(125x^3-150x^2+60x-8=\left(5x-2\right)^3\)
Phân tích đa thức thành nhân tử:
a)x2-4xy+x-4y
b)x2-6xy+9y2-4
c)x3-4x2-12x+27
a) = (x - 4y)(x + 1)
b) = (x - 3y)^2 - 2^2
= (x - 3y - 2)(x - 3y + 2)
c) = x^2(x + 3) - 7x(x + 3) + 9(x + 3)
= (x + 3)(x^2 - 7x + 9)
a: \(x^2-4xy+x-4y\)
\(=x\left(x-4y\right)+\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x+1\right)\)
b: \(x^2-6xy+9y^2-4\)
\(=\left(x-3y\right)^2-4\)
\(=\left(x-3y-2\right)\left(x-3y+2\right)\)
Phân tích các đa thức sau thành nhân tử:
a,5x2 - 5xy + 7y - 7x ;
b,x2 + 2xy + x + 2y ;
c,x2 - 6x - 9y2 + 9 ;
a: =5x(x-y)-7(x-y)
=(x-y)(5x-7)
b: =x(x+2y)+(x+2y)
=(x+2y)(x+1)
c; =(x-3)^2-9y^2
=(x-3-3y)(x-3+3y)
a
\(5x^2-5xy+7y-7x\\ =5x\left(x-y\right)+7\left(y-x\right)\\ =5x\left(x-y\right)-7\left(x-y\right)\\ =\left(5x-7\right)\left(x-y\right)\)
b
\(x^2+2xy+x+2y\\ =x\left(x+2y\right)+\left(x+2y\right)\\ =\left(x+1\right)\left(x+2y\right)\)
c
\(x^2-6x-9y^2+9\\ =x^2-6x+9-\left(3y\right)^2\\ =x^2-2.x.3+3^2-\left(3y\right)^2\\ =\left(x-3\right)^2-\left(3y\right)^2\\ =\left(x-3-3y\right)\left(x-3+3y\right)\)
Câu II (2,0 điểm) Phân tích các đa thức sau thành nhân tử:
a) x2 – 3x + xy – 3y
b) x3 + 10x2 + 25x – xy2
c) x3 + 2 + 3(x3 – 2)
a) Ta có: \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x-3\right)\left(x+y\right)\)
b) Ta có: \(x^3+10x^2+25x-xy^2\)
\(=x\left(x^2+10x+25-y^2\right)\)
\(=x\left(x+5-y\right)\left(x+5+y\right)\)
c) Ta có: \(x^3+2+3\left(x^3-2\right)\)
\(=4x^3-4\)
\(=4\left(x-1\right)\left(x^2+x+1\right)\)
Bài 1: (2,0 điểm) Phân tích các đa thức sau thành nhân tử:
a) 5x2y3 25x3y4 10x3y3
b) xy 3x 2y 6
c) x2 6xy 4z2 9y2
b: Ta có: \(xy-3x-2y+6\)
\(=x\left(y-3\right)-2\left(y-3\right)\)
\(=\left(y-3\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử:
a)x2-9+2.(x+3)
b)x2-10x+25-3.(x-5)
c)x3-4x2+3x
a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)
b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)
c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 4x2-4x+1
b)16y3-2x3-6x(x+1)-2
c)x2-6xy-25z2+9y2
\(a,4x^2-4x+1\\ =\left(2x\right)^2-2.2x+1^2=\left(2x-1\right)^2\\ c,x^2-6xy-25z^2+9y^2\\ =\left(x^2-2.x.3y+9y^2\right)-\left(5z\right)^2\\ =\left(x-3y\right)^2-\left(5z\right)^2\\ =\left(x-3y-5z\right)\left(x-3y+5z\right)\)
Xem lại đề ý b