\(\sqrt{5x^2-2x\sqrt{5}+1}-\sqrt{4x^2+4x\sqrt{5}+5}=0\)(tìm x)
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
a) \(\sqrt{x-5}=\sqrt{3-x}\)
⇔\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)
⇔\(x-5=3-x\)
⇔\(x=4\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
⇔\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)
⇔\(4-5x=2-5x\)
⇔\(2=0\) (Vô lí)
tìm x:
\(\sqrt{x^2+x+1}=1\)
\(\sqrt{x^2+1}=-3\)
\(\sqrt{x^2-10x+25}=7-2x\)
\(\sqrt{2x+5}=5\)
\(\sqrt{x^2-4x+4}-2x+5=0\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính:
\(M=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2}}{\sqrt{2x^2+2x}}\right)^{2016}\)
\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)
\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)
\(\Leftrightarrow4x^2+4x-1=0\)
\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)
\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)
\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)
\(M=1+8+1=10\)
Giải các phương tình sau:
a) \(x^3-3x^2+12x-5=2\sqrt{5x-1}+\sqrt[3]{3x-2}\)
b) \(4x^2+24x+17=2\sqrt{2x+5}+\sqrt[3]{4x+10}\)
c) \(2x^3-5x^2+16x-3=2\sqrt[3]{4x-1}+\sqrt[3]{2x+7}\)
d) \(2x^2+11x+12=2\sqrt{2x+3}+\sqrt[3]{x+2}\)
e) \(2x^2+3x-3-2\sqrt{2x+1}-\sqrt[3]{4x+2}=0\)
1) \(\left|x^2-4x-5\right|=x-1\)
2) \(\sqrt{2x^2+2x+9}=x-3\)
3) \(\sqrt{x+1}+1=4x^2+\sqrt{3x}\)
4) \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-3\)
1) Ta có: \(\left|x^2-4x-5\right|=x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x-1\left(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\right)\\-x^2+4x+5=x-1\left(-1< x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5-x+1=0\\-x^2+4x+5-x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=0\\-x^2+3x+6=0\end{matrix}\right.\Leftrightarrow x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{\sqrt{41}}{2}\\x-\dfrac{5}{2}=-\dfrac{\sqrt{41}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{41}+5}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{41}+5}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{41}+5}{2}\right\}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
Tính \(A=\left(4x^5+4x^4-x^3+1\right)^{19}+\left(\sqrt{x^5+4x^4-5x^3+5x+3}\right)^3+\left(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)\)
Ta có:
x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)
= \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)
= \(\frac{1}{2}\)(\(\sqrt{2}\)-1)
=> 2x = \(\sqrt{2}\)-1
=> (2x)2= ( \(\sqrt{2}\)-1)2
=> 4x2= 2-2\(\sqrt{2}\)+1
=> 4x2= -2( \(\sqrt{2}\)-1)+1
=> 4x2= -4x +1 => 4x2+4x-1=0
Lại có:
A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19
= [ x3( 4x2+4x-1) +1]19
=1
A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3
= (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3
= 23=8
A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)
= \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)
Cộng 3 số vào ta được A