Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minhh Tâmm
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 12:16

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 22:54

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 22:55

2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)

=0

Trương Linh
Xem chi tiết
Dương An Hạ
Xem chi tiết
Nguyệt
21 tháng 7 2019 lúc 16:49

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

Nguyệt
21 tháng 7 2019 lúc 16:54

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

Nguyệt
21 tháng 7 2019 lúc 16:57

c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)

Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)

Hoàng Ngọc Hân
Xem chi tiết
HT.Phong (9A5)
12 tháng 9 2023 lúc 12:03

a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)

\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)

\(=\sqrt{5}+\sqrt{5}\)

\(=2\sqrt{5}\)

b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)

\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)

\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)

\(=\sqrt{2}-1-5+\sqrt{2}\)

\(=2\sqrt{2}-6\)

Linh Cute
Xem chi tiết
tth_new
13 tháng 9 2019 lúc 9:23

\(\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}< \frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}\)

Vậy đề bài sai:)

trần thị kim thư
Xem chi tiết
Minh Nhân
10 tháng 7 2021 lúc 17:27

\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)

\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)

\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)

 

Nguyễn Thị Quỳnh Như
Xem chi tiết
Huỳnh Hải Triều
17 tháng 6 2017 lúc 19:04

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

Đỗ Vy
Xem chi tiết
Akai Haruma
12 tháng 9 2021 lúc 3:52

Lời giải:

$\sqrt{3}+5> \sqrt{1}+5=6$

$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$

$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$

Fkghcy Hy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 12:53

1: \(8^2=64=22+32=22+2\cdot16=22+2\cdot\sqrt{256}\)

\(\left(\sqrt{8}+\sqrt{14}\right)^2=22+2\cdot\sqrt{112}\)

mà \(16>\sqrt{112}\)

nên 8^2>(căn 8+căn 14)^2

=>8>căn 8+căn 14

2: \(\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)

\(\left(3+\sqrt{2}\right)^2=11+6\sqrt{2}\)

mà 7<11 và 4căn 3<6căn 2(48<72)

nên (2+căn 3)^2<(3+căn 2)^2

=>2+căn 3<3+căn 2