Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 12:35

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

hoanghuongly
Xem chi tiết
Nguyễn Thị Anh
2 tháng 8 2016 lúc 13:53

Hỏi đáp Toán

nguyenthitulinh
Xem chi tiết
Đặng Tiến
2 tháng 8 2016 lúc 14:41

\(\left(x-4\right)^2+\left(x-5\right)^2\)

\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)

\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)

Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)

nên \(2\left(x-\frac{9}{2}\right)\ge0\)

do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Khả Khả
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
ngonhuminh
7 tháng 12 2016 lúc 16:46

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Đặng Thiên Long
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Bùi Lê Anh Khoa
3 tháng 3 2017 lúc 22:21

\(F\)=5 ; \(I\)=91

Hoàng Phúc
7 tháng 3 2017 lúc 15:01

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)

Vũ Hà Phương
Xem chi tiết
Dang Tung
17 tháng 12 2023 lúc 8:10

\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)

Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)

\(\Rightarrow\left|x\right|+2022\ge2022\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)

\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)

Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)

Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0