Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Bảo Thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 8:43

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

Trịnh Trọng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 22:58

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

Ki Ta
Xem chi tiết
gfffffffh
1 tháng 3 2022 lúc 21:23

gfvfvfvfvfvfvfv555

Khách vãng lai đã xóa
Phương Nguyễn 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:16

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 21:55

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 21:56

c) Ta có: ΔABC\(\sim\)ΔHBA(cmt)

nên \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

Linh Nguyễn
Xem chi tiết
乇尺尺のレ
24 tháng 5 2023 lúc 22:42

a, Xét ΔABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)

        \(=6^2+8^2\)

        \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b, Xét ΔABC và ΔABH ta có:

\(\widehat{B}\) \(chung\)

\(\widehat{BAC}=\widehat{AHB}=90^0\)

→ΔABC ∼ ΔABH(g-g)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)

c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)

\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)

 

 

Xét ΔABC có AD là phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 5 2023 lúc 9:01

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

c: BH=6^2/10=3,6cm

MaiLinh
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 16:40

\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)

\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)

\(d,\) Vì AD là p/g góc A

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)

Mà \(BD+DC=BC=10\)

\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

 

Nguyễn Lê Phương Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2021 lúc 20:13

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy:BC=10cm

Khánh Linh Nguyễn
Xem chi tiết

a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHCA đồng dạng với ΔACB

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)

Từ Chối
Xem chi tiết
Uyên trần
19 tháng 4 2021 lúc 17:00

Nguyễn Huy Tú
19 tháng 4 2021 lúc 17:07

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

Uyên trần
19 tháng 4 2021 lúc 17:14

a, xét \(\Delta\) ABC vg tại A áp dụng đl Py ta go ta có 

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=100\Rightarrow\) \(BC=10\)

Ta có AD là tia pg của \(\Delta\) ABC

\(\dfrac{\Rightarrow DB}{AB}=\dfrac{DC}{AC}=\dfrac{DB+DC}{AB+AC}=\dfrac{BC}{AB+AC}\)\(=\dfrac{10}{14}=\dfrac{5}{7}\)

\(\Rightarrow DB=\dfrac{30}{7}=4,2\\ \Rightarrow DC=10-4,2=5,8\)

b, Xét \(\Delta ABC\)  và \(\Delta HBA\)

< BAC=< BHA(=90\(^0\) )

<ABC chung

\(\Rightarrow\Delta ABC~\Delta HBA\)

c, ta có \(\Delta ABC\) ~ \(\Delta HBA\)

\(\dfrac{\Rightarrow AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=HB\cdot BC\)

d, ta có \(HB=AB^2:BC=3,6\)

\(\Rightarrow HC=BC-BH=10-3,6=6,4cm\)