Phân tích đa thức thành nhân tử:
x^8+64
3x^4+192
Phân tích đa thức thành nhân tử:x^8+3x^4+1
Đề đúng không thế. Nếu đúng thì bài này phức tạp lắm
\(x^8+3x^3+1\)
\(=x^8-x^4+4x^4+4\)
\(=\left(x^4-1\right)\cdot\left(x^4+1\right)+4\cdot\left(x^4+1\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4-1+4\right)\)
\(=\left(x^4+1\right)\cdot\left(x^4+3\right)\)
Phân tích đa thức sau thành nhân tử:x^8+x+1
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(x^8+x+1\)
\(=\left(x^8-x^5\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^5\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5\right)\left(x^2+x+1\right)+\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
phân tích đa thức sau thành nhân tử:x^4+64
x^4+64
=(x^2)^2+8^2+2.x^2.8-2.x^2.8
=(x^2+8)^2-16x^2
=(x^2+8-4x)(x^2+8+4x)
Phân tích đa thức thành nhân tử:
x^4 - x^2 + 2x + 2
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(x^4-x^2+2x+2\)
\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=\left(x+1\right)\left(x^3-x^2+2\right)\)
Phân tích đa thức sau thành nhân tử:
x^2/4+2xy+4y^2
\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)
phân tích đa thức thành nhân tử:x^4+2002x^2-2001x+2002
\(x^4+2002x^2-2001x+2002\)
\(=x^4+2002x^2+x-2002x+2002\)
\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)
\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)
phân tích đa thức sau thành nhân tử:x^4-5x^2y^2+4y^4
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
Phân tích đa thức thành nhân tử:x^4+x^2+4=0
\(x^4\ge0;x^2\ge0;4>0\Rightarrow x^4+x^2+4>0\)
phân tích đa thức thành nhân tử:x^4+x^3+2x^2-x+3
phân tích đa thức sau thành nhân tử:x^6-3x^4+3x^2-1-y^3