\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(x^4-x^2+2x+2\)
\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=\left(x+1\right)\left(x^3-x^2+2\right)\)