Cho a+b+c=0 và a^2+b^2+c^2=2. Tính giá trị của: a^4+b^4+c^4
Giúp mk vs!!! Thanks
Cho a3+b3+c3 =3abc và a+b+c khác 0.Tính giá trị biểu thức N=\(\frac{a^2+b^2+c^2}{\left(a+b+a\right)^2}\)
Cho a+b=1.Tính giá trị của biểu thức sau M= a3+b3+3ab(a2+b2)+6a2b2(a+b)
Giúp mk vs nha!!Thanks mn nhìuu:))))
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
...
Cho a+b+c=0 và a^2+b^2+c^2=1. Tính giá trị của biểu thức: M=a^4+b^4+c^4
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Cho biết x-y=4 và xy =1 . Tính giá trị biểu thức A= x^2+ y^2; B=x^3-y^3 ; C=x^4+y^4
giúp e với ạ, e cảm ơn
\(x=\dfrac{1}{y}\Rightarrow\dfrac{1}{y}-y=4\\ \Rightarrow y^2+4y-1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\\y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\end{matrix}\right.\)
Với \(x=2-\sqrt{5};y=-2-\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^2=322\)
Với \(x=2+\sqrt{5};y=-2+\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^4=322\)
A=x^2+y^2
=(x-y)^2+2xy
=4^2+2=18
B=(x-y)^3+3xy(x-y)
=4^3+3*1*4
=64+12=76
C=(x^2+y^2)^2-2x^2y^2
=18^2-2
=322
Cho các số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2. Tính giá trị của biểu thức P=a^4+b^4+c^4
tính giá trị của BT \(a^4+b^{4^{ }}+c^4+\dfrac{1}{4}\) biết a+b+c = 0 và \(a^2+b^2+c^2=1\)
Ta có: a+b+c=0
nên \(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow2ab+2ac+2bc=-1\)
\(\Leftrightarrow ab+ac+bc=\dfrac{-1}{2}\)
\(\Leftrightarrow\left(ab+ac+bc\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
Vậy: \(a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{3}{4}\)
ta có:
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
<=>(a+b+c)2=a2+b2+c2+2.(ab+bc+ac)
=>02 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2
(ab+bc+ac)2=a2b2+a2c2+b2c2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b2+a2c2+b2c2+abc.(a+b+c)
=> (-1/2)2=a2b2+a2c2+b2c2+abc.0
=>a2b2+a2c2+b2c2=1/4
suy ra:
(a2+b2+c2)2=a4+b4+c4+a2b2+a2c2+b2c2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
ta có:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)
=>0^2 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)
=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4
suy ra:
(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
:A
a) Cho a+b+c = 0 và a2+b2+c2 = 14. Tính giá trị của A =a4+b4+c4
b) Cho x+y+z = 0 và xy+yz+zx = 0. Tính giá trị B = (x-1)2007 + y2008 + (z+1)2009
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)