\(\left(a+b+c\right)=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2ab+2bc+2ac=-2\)
\(\Rightarrow ab+bc+ac=-1\Rightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=4\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+0=4\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=4\)
Có \(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\)
\(\Rightarrow a^4+b^4+c^4+2.4=4\)
Bn làm phần kết quả nhé