Rút gọn biểu thức:
\(\sqrt{13-4\sqrt{5}}\)
B 4. Rút gọn các biểu thức sau:
a)\(\sqrt{6-2\sqrt{5}}\) b) \(\sqrt{3-2\sqrt{2}}\)
c)\(\sqrt{4+2\sqrt{3}}\) d)\(\sqrt{14+2\sqrt{13}}\)
a: \(=\sqrt{5}-1\)
b: \(=\sqrt{2}-1\)
c: \(=\sqrt{3}+1\)
d: \(=\sqrt{13}+1\)
Rút gọn biểu thức.
a) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
a: \(=\sqrt{8+2\cdot2\sqrt{2}\cdot\sqrt{5}+5}+\sqrt{8-2\cdot2\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
b: \(=2\cdot\sqrt{17-3\sqrt{32}}\)
\(=2\cdot\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=2\left(3-2\sqrt{2}\right)=6-4\sqrt{2}\)
rút gọn biểu thức
a) \(\left(\sqrt{7}-\sqrt{2}\right).\left(\sqrt{9+2\sqrt{14}}\right)\)
b) \(\sqrt{\sqrt{13}-\sqrt{3-\sqrt{13}}-4\sqrt{3}}\)
c) \(\sqrt{80-\sqrt{321-16\sqrt{5}}-\sqrt{226-80\sqrt{5}-\sqrt{89-25\sqrt{5}}}}\)
d) \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
e) \(\dfrac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\dfrac{6}{\sqrt{2}}-\dfrac{3}{\sqrt{2}+1}\)
f) \(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
g) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)
\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)
=7-2
=5
d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)
\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)
\(=4\sqrt{7}\)
Rút gọn biểu thức \(\dfrac{3}{5}-\sqrt{16}+\sqrt{0,16}-\sqrt{\dfrac{13}{52}}+\sqrt{\left(-5,5\right)^2}\)
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
a)\(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+3\sqrt{2^2}+2\sqrt{2}}-\sqrt[3]{2\sqrt{2}-3\sqrt{2^2}+3\sqrt{2}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[.3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)
b)\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Leftrightarrow B^3=5+2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5+2\sqrt{13}}\right)+5-2\sqrt{13}\)
\(\Leftrightarrow B^3=10+3.\sqrt[3]{-27}.B\)
\(\Leftrightarrow B^3+9B-10=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+10\right)=0\)
\(\Leftrightarrow B=1\) (vì \(B^2+B+10>0\))
c)\(C=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
\(\Leftrightarrow2C=\sqrt[3]{8\sqrt{5}+16}-\sqrt[3]{8\sqrt{5}-16}=\sqrt[3]{1+3\sqrt{5}+3\sqrt{5^2}+5\sqrt{5}}-\sqrt[3]{5\sqrt{5}-3\sqrt{5^2}+3\sqrt{5}-1}\)
\(=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{\left(\sqrt{5}-1\right)^3}\)
\(=1+\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(\Rightarrow C=1\)
d) \(D=\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\left(\sqrt[3]{9^2}-\sqrt[3]{6}+\sqrt[3]{2^2}\right)}\left(\dfrac{1+\sqrt{2}}{\sqrt{\left(1-\sqrt{3}\right)^2}}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\right)\)
\(=\dfrac{10\left(\sqrt[3]{3}+\sqrt[3]{2}\right)}{5}.\dfrac{1+\sqrt{2}}{\left|1-\sqrt{3}\right|}.\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=2\left(\sqrt[3]{3}+\sqrt[3]{2}\right).\dfrac{\left(\sqrt{2}\right)^2-1}{\left(\sqrt{3}\right)^2-1}\)
\(=\sqrt[3]{3}+\sqrt[3]{2}\)
Vậy...
Rút gọn biểu thức :
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Rút gọn biểu thức \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)=\(\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)
=\(\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)=\(\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\sqrt{13+30\sqrt{2}+30}\)
=\(\sqrt{43+30\sqrt{2}}\)=\(\sqrt{\left(5+3\sqrt{2}\right)^2}\)=\(5+3\sqrt{2}\)
Giá trị rút gọn của biểu thức là .......
\(\sqrt{13+4\sqrt{3}}\cdot\sqrt{28+6\sqrt{3}}-5\sqrt{3}\)
\(=\sqrt{\left(2\sqrt{3}+1\right)^2}\cdot\sqrt{\left(3\sqrt{3}+1\right)^2}-5\sqrt{3}\)
\(=\left(2\sqrt{3}+1\right)\left(3\sqrt{3}+1\right)-5\sqrt{3}\)
\(=6\cdot3+2\sqrt{3}+3\sqrt{3}+1-5\sqrt{3}\)
\(=18+1=19\)
Rút gọn các biểu thức sau:
D = \(\sqrt{9+4\sqrt{2}}-3\)
E = \(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
F = \(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)
b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)
c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)