Cho x2 - 2(m+1)x +m +1 =0
Tìm m để P=x1x2 - 2(x1+x2) -6 đạt giá trị nhỏ nhất
1.Cho pt x2-2(m+1)x + m-2=0, với x là ẩn số, m thuộc R
a, Giải pt khi m=-2
b, Giải sử pt đã cho có 2 nghiệm phân biệt x1, x2. tìm hệ thức liên hệ giữa x1 và x2 mà ko phụ thuộc vào m
2. cho pt: x2-2(m-3)x-1=0
Tìm m để pt có nghiệm x1, x2 mà biểu thức a=x21 - x1x2 + x22 đạt giá trị nhỏ nhất? tìm gia trị nhỏ nhất đó
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
Cho pt 2x^2+2mx+m^2-2=0. Tìm m để pt có 2 nghiệm sao cho: A=giá trị tuyệt đối của 2x1x2+x1+x2-4 đạt giá trị lớn nhất
Cho pt \(x^2-2x+m=0\) . Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn \(\frac{m^3-m^2+4m}{x_1^2+2x_2+m^2}+m^2+1\) đạt giá trị nhỏ nhất
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))
1) Gọi nghiệm của hệ phương trình 2x+y=5 và 2y-x=10K + 5 là (x;y)
Tìm K để B = (2x+1)(y+1) đạt giá trị lớn nhất
2) Cho hệ phương trình x-2y=3-m và 2x+y=3(m+2). Gọi nghiệm của hệ phương trình là (x;y). Tìm m để x^2 + y^2 đạt giá trị nhỏ nhất
tìm x để biểu thức sau đạt giá trị nhỏ nhất M=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|
a. Tìm x để biểu thức A=1000-|x+5| đạt giá trị lớn nhất
b. Tìm x để biểu thức B=|x-3|+5 đạt giá trị nhỏ nhất
a. A=1000-|x+5| < 1000
=> GTLN của A là 1000
<=> x + 5 = 0
<=> x = -5
b. B = |x-3| + 5 > 5
=> GTNN của B là 5
<=> x - 3 = 0
<=> x = 3
a) A = 1000 - |x + 5| \(\le\)1000
Vậy GTLN của A = 1000 khi
|x + 5| = 0 => x= -5
b)B = |x - 3| + 5 \(\ge\) 5
Vậy GTNN của B = 5 khi
|x - 3| = 0 => x = 3
Tìm giá trị của x, y để ;
s = I x + 3 I + I 2y - 14 I + 2016 đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất đó .
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
cho \(M=\frac{-x-24}{x-15}\) Tìm số nguyên x để M đạt giá trị nhỏ nhất
Bài 1. Tìm m để với mọi y>9 ta có m(căn y -3)(-4y)/(3-căn y) > y+1
Bài 2. Tìm m để phương trình x^2+4(m-1)x-12=0 có 2nghiệm pb x1, x2 thỏa mãn 4|x1-2|Căn (4-x2)=(x1+x2-x1x2-8)^2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Cho phương trình: x^2 - mx + 2m - 4 = 0 (1)
a) chứng minh rằng phương trình (1) luôn có nghiệm với mọi giá trị của m.
b) tìm giá trị của m để biểu thức A = x1^2 + x2^2 - 9 có giá trị nhỏ nhất.
a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)
= m2 - 8m + 16 = ( m - 4 )2
Ta có: ( m - 4 )2 \(\ge\) 0
=> Pt luôn có nghiệm
b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9
= x12 + x22 + 2x1x2 - 2x1x2 - 9
= (x1 + x2)2 - 2x1x2 - 9
= (-m)2 - 2(2m - 4) - 9
= m2 - 4m + 8 - 9
= m2 - 4m - 1 = m2 - 4m + 4 - 5
= (m - 2)2 - 5
Xét (m - 2)2 \(\ge\) 0
=> (m - 2)2 - 5 \(\ge\) -5
Dấu " =" xảy ra khi m - 2 = 0
<=> m = 2
\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm
Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)
\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)
\(A=m^2-2\left(2m-4\right)-9\)
\(A=m^2-4m-1\)
\(A=\left(m-2\right)^2-5\ge-5\)
\(\Rightarrow A_{min}=-5\) khi \(m=-2\)