Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm hoàng
Xem chi tiết
Trịnh Trần Khánh Ngọc
Xem chi tiết
Trịnh Trần Khánh Ngọc
20 tháng 10 2021 lúc 16:30

help meeee!

Tran Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 21:33

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{HCB}=90^0\)

Xét tứ giác HKBC có 

\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối

\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: HKBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Music Hana
Xem chi tiết
Alva Drunk
Xem chi tiết
sky12
4 tháng 4 2023 lúc 16:54

loading...  loading...  loading...  

Aurora
Xem chi tiết
ntkhai0708
21 tháng 3 2021 lúc 17:29

a, Ta có: $HM⊥AB;HN⊥AC$

$⇒\widehat{HMA}=\widehat{HNA}=90^o$

$⇒\widehat{HMA}+\widehat{HNA}=180^o$

$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)

Nên $AH^2=AM.AB(1)$

Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)

Nên $AH^2=AN.AC(2)$

Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$

Xét tam giác $AMN$ và tam giác $ACB$ có:

$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung

$⇒$  tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$

(đpcm)

c,  tam giác $AMN$ $\backsim$ tam giác $ACB$

$⇒\widehat{ANM}=\widehat{ABC}$

Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)

Nên $\widehat{ANM}=\widehat{AEC}$

Hay  $\widehat{ANI}=\widehat{IEC}$

$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)

c, Ta có: $\widehat{ANM}=\widehat{ABC}$

Mà $\widehat{ABC}+\widehat{AKC}=180^o$

do tứ giác $ABCK$ nội tiếp $(O)$

Nên $\widehat{ANM}+\widehat{AKC}=180^o$

Mà $\widehat{ANM}+\widehat{ANK}=180^o$

Nên $\widehat{AKC}=\widehat{ANK}$

Xét tam giác $AKC$ và tam giác $ANK$ có:

$\widehat{AKC}=\widehat{ANK}$

$\widehat{A}$ chung

nên  tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$

$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$

$⇒AK^2=AN.AC$

mà $AH^2=AN.AC(cmt)$

$⇒AK^2=AH^2$

hay $AK=AH$

suy ra tam giác $AHK$ cân tại $A$undefined

 

Aurora
21 tháng 3 2021 lúc 16:44

Nguyễn Lê Phước Thịnh

Akai Haruma     Trần Đức Mạnh  Nguyễn Việt Lâm

Dương Trần Quang Duy
Xem chi tiết
Dương Trần Quang Duy
Xem chi tiết
Nga Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 20:46

a: Xét tứ giác AHKC có \(\widehat{AHC}=\widehat{AKC}=90^0\)

nên AHKC là tứ giác nội tiếp

=>A,H,K,C cùng thuộc một đường tròn