Cho tam giác ABC có góc B=góc C + nội tiếp đường tròn (O;R) đường vuông góc với BC từ B cắt đường tròn O ở T
a)Chứng minh tiếp tuyến của đường tròn O kẻ từ A thì vuông góc BC
b)CHứng minh
c)Giả sử C= tính diện tích tam giác ABC theo R
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
cho (O, R), lấy điểm O cách A một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K
a, Chứng minh: Tam giác OKA cân tại K
b, Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm O đường kính AB . Gọi H là điểm nằm giữa O và B . Kẻ dây CD vuông góc với AB tại H . Trên cung nhỏ AC lấy điểm E , kẻ CK vuông góc với AE tại K . Đường thẳng DE cắt CK tại F . Chứng minh :
a, Tứ giác AHCK nội tiếp đường tròn
b, AH . AD = AD^2
c, Tam giác ACF cân
Cho (O), từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB, AC với đường tròn. I là điểm thuộc cung nhỏ BC, từ I kẻ ID, IE, IF vuông góc với AB, BC, AC; IB cắt DE tại M, IC cắt EF tại N
a) Chứng minh tứ giác BEID và tứ giác CEIF nội tiếp
b) Chứng minh tam giác IDE đồng dạng với tam giác IEF
c) Chứng minh IE vuông góc với MN