so sánh 2\(\sqrt{2}\) và 2 + \(\sqrt{2}\)
\(So\) \(sánh\) \(\sqrt{2\sqrt{6}-3\sqrt{2}}-\sqrt{2\sqrt{3}-3}\) \(và\) \(0\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{2}\) + \(\sqrt{3}\) > 2
So sánh :
- 10 và \(-2\sqrt{31}\)
\(2\sqrt{3}\) - 5 và \(\sqrt{5}\) - 4
2 + \(\sqrt{5}\) và 3 + \(\sqrt{2}\)
so sánh
2 và \(\sqrt{2}\)+ 1
2\(\sqrt{31}\)và 10
\(-3\sqrt{11}\)và - \(\sqrt{12}\)
a: \(1< \sqrt{2}\)
nên \(2< \sqrt{2}+1\)
b: \(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}\)
mà 124>100
nên \(2\sqrt{31}>10\)
c: \(-3\sqrt{11}=-\sqrt{99}\)
\(-\sqrt{12}=-\sqrt{12}\)
mà 99>12
nên \(-3\sqrt{11}< -\sqrt{12}\)
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
So sánh:
1) \(\dfrac{1}{4}\) và \(\dfrac{1}{1+2\sqrt{2}}\)
2)\(\sqrt{2018}+\sqrt{2025}\) và \(\sqrt{2026}+\sqrt{2024}\)
1) Ta thấy:
\(4=1+3=1+\sqrt{9}\)
\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)
Mà: \(\sqrt{8}< \sqrt{9}\)
\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)
\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)
\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)
2) Ta thấy:
\(2018< 2024\)
\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)
\(2025< 2026\)
\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)
Từ (1) và (2) ta có:
\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)
So sánh ( Không sử dụng máy tính)
a) \(\sqrt{2}+\sqrt{3}\) và 3
b) 5 - và\(3\sqrt{2}-2\)
c) 3+ và \(2\sqrt{2}+6\)
so sánh\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)và\(\sqrt{3}\)
so sánh
\(\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}\) và 2
\(\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}\) \(< 2\)
Đặt \(a_1=\sqrt{2\sqrt{2}}< \sqrt{2.2}=2\)
\(a_2=\sqrt{2.a_1}< \sqrt{2.2}=2\)
\(a_3=\sqrt{2.a_2}< \sqrt{2.2}=2\)
................................
\(a_n=\sqrt{2.a_{n-1}}< \sqrt{2.2}=2\)(Ở đây đề không nói rõ \(\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}\)có bao nhiêu dấu căn nên mình làm đến \(a_n\), tức là tổng quát với n dấu căn)
Ta lại có \(a_n=\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}\)nên \(\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}< 2}\)(đpcm)