cba+ab+cb=899
thay các chữ thành các chữ số thích hợp:
a,cba+ab+cb=899
b,abc+bac+cba=1323
a)abc+ab+ca+928
b)cba+ab+cb=899
c)abc+bac+cba=1323
d)abc+acb=bea
e)a+ab+abc=bcb
g)abcd+abc+ab+a=4321
cách giải đầy đủ nha
Cho ABC vuông tại A. có AH là đường cao
a/ Cm ABH đồng dạng CBA suy ra AB^2=BH. CB
b/ Cho BH=4cm CB =12cm. Tính AB và AC
c/ Tính S EBH/S DBA
d/ Gọi I là hình chiếu của A trên BD M là trung điểm BE. Cm IH vuông HM
easy như 1 trò đùa dùng các tính chất của tam giác vuông ý
Bài 2: Cho tam giác ABC trên tia đối của tia CA lấy điểm D sao cho CD = CA, trên tia đối của tia CB lấy điểm E sao cho CE=CB
a) Chứng minh: tam giác ABC= tam giác DEC
b) Chứng minh: AB //DE
c) Trên cạnh AB lấy điểm M , trên cạnh DE lấy điểm N sao cho AM=DN. Chứng minh:tam giác AMC= tam giác DNC
d) Chứng minh: Ba điểm M, C, N thẳng hàng
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
tính a,b,c
ac,b x ba,c x cb,a = abc,cba
khó wa ai giúp mik nào mik sẽ tick cho
Tìm số nguyên tố nhỏ nhất có ba chữ số abc sao cho cả sáu số a ,ab,abc,c,cb và cba đều là các số nguyên tố
ai làm đc jup minh vs
Cho ABC vuông tại A. có AH là đường cao
a/ Cm ABH đồng dạng CBA suy ra AB^2=BH. CB
b/ Cho BH=4cm CB =12cm. Tính AB và AC
c/ Tính S EBH/S DBA
d/ Gọi I là hình chiếu của A trên BD M là trung điểm BE. Cm IH vuông HM
Mình tự làm a b c được rồi bạn nào giúp mình câu d với
a) Xét \(\Delta ABH\) và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHUNG
Suy ra: \(\Delta ABH~\Delta CBA\)
\(\Rightarrow\)\(\frac{AB}{CB}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.CB\)
b) \(\Delta ABH~\Delta CBA\)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{HB}{AB}\)
\(\Rightarrow\)\(AB^2=BC.HB=12.4=48\)
\(\Rightarrow\)\(AB=\sqrt{48}=4\sqrt{3}\)
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow\)\(AC^2=12^2-\left(4\sqrt{3}\right)^2=96\)
\(\Leftrightarrow\)\(AC=\sqrt{96}=4\sqrt{6}\)
Cho tam giác ABC và Cx là tia đối của tia CB (H.4.5)
Chứng minh rằng \(\widehat {ACx} = \widehat {BAC} + \widehat {CBA}\)
Ta có: \(\widehat {ACB} + \widehat {ACx} = {180^o}\, \Rightarrow \widehat {ACx} = 180 - \widehat {ACB}\)
\(\widehat {BAC} + \widehat {CBA} + \widehat {ACB} = {180^o} \Rightarrow \widehat {BAC} + \widehat {CBA} = {180^o} - \widehat {ACB}\)
Vậy \(\widehat {ACx} = \widehat {BAC} + \widehat {CBA}\)
Giả sử ∫ 1 2 1 + x 2 x 4 d x = 1 c a a - b b + c b a ; b ; c ∈ ℕ ; 1 ≤ a , b , c ≤ 9 . Tính giá trị biểu thức S = C 2 a + c b - a .
A. 165
B. 715
C. 5456
D. 35
Chọn D.
Phương pháp: Tính tích phân để suy ra a, b, c.
Cách giải: Ta có: