Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
nhi nguyễn
26 tháng 5 2017 lúc 22:36

a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

Bình luận (0)
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 10:49

Căn bậc hai. Căn bậc ba

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 20:21

a) Các giao điểm của (E) với trục hoành có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)

Các giao điểm của (E) với trục tung có tọa độ thỏa mãn hệ phương trình

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y =  \pm b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{B_1}\left( {0; - b} \right)\\{B_2}\left( {0;b} \right)\end{array} \right.\)

Ta có \({A_1}{A_2} = 2a,{B_1}{B_2} = 2b\).

b) Do M thuộc (E) nên ta có \(\frac{{x_o^2}}{{{a^2}}} + \frac{{y_o^2}}{{{b^2}}} = 1\)

Do \(a > b > 0\) nên ta có \(\frac{{x_o^2}}{{{a^2}}} \le \frac{{x_o^2}}{{{b^2}}}\). Suy ra \(1 \le \frac{{x_o^2}}{{{b^2}}} + \frac{{y_o^2}}{{{b^2}}} \Rightarrow {b^2} \le x_o^2 + y_o^2\)

Tương tự ta có \(\frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}}\) nên \(1 \ge \frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}} \Rightarrow {a^2} \ge x_o^2 + y_o^2\)

Vậy \({b^2} \le x_o^2 + y_o^2 \le {a^2}\)

Ta có \(OM = \sqrt {x_o^2 + y_o^2} \) suy ra \(b \le OM \le a\)

Bình luận (0)
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:58

+) Từ phương trình \({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_1}} \) là \(\left( {{a_1};{b_1}} \right)\)

+) Từ phương trình \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_2}} \) là \(\left( {{a_2};{b_2}} \right)\)

+) \(\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\overrightarrow {{n_1}} .\overrightarrow {{n_2}} }}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{{a_1}{a_2} + {b_1}{b_2}}}{{\sqrt {{a_1}^2 + {b_1}^2} \sqrt {{a_2}^2 + {b_2}^2} }}\)

Bình luận (0)
Minh Quang Nguyễn
Xem chi tiết
Nguyễn Linh Chi
28 tháng 5 2020 lúc 7:17

Theo vi ét: 

\(\hept{\begin{cases}a_1a_2=1\\a_1+a_2=-p\end{cases}}\) và \(\hept{\begin{cases}b_1b_2=1\\b_1+b_2=-q\end{cases}}\)

Ta có: \(\left(a_1-b_1\right)\left(a_2-b_1\right)\left(a_1+b_2\right)\left(a_2+b_2\right)\)

\(=\left(a_1a_2+b_1^2-a_1b_1-a_2b_1\right)\left(a_1a_2+a_2b_2+b_2^2+a_1b_2\right)\)

\(=\left(1+b_1^2+pb_1\right)\left(1+b_2^2-pb_2\right)\)

\(=1+b_2^2-pb_2+b_1^2+b_1^2b_2^2-pb_1^2b_2+pb_1+pb_1b_2^2-p^2b_1b_2\)

\(1+b_1^2+b_2^2-pb_2-pb_1+1+pb_1+pb_2-p^2\)

\(=2+\left(b_1+b_2\right)^2-2b_1b_2-p^2\)

\(=q^2-p^2\)

Bình luận (0)
 Khách vãng lai đã xóa
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Vũ Huy Hoàng
Xem chi tiết
Are you Ready
Xem chi tiết
Vũ Đức Mạnh
15 tháng 4 2018 lúc 16:30

mày bị điên đứa nào thích thì mà đứa nào chơi truy kích cho tao nick

Bình luận (0)
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
EDOGAWA CONAN
20 tháng 12 2018 lúc 20:08

Đặt \(f\left(x\right)=\left(a_1x-b_1\right)^2+...+\left(a_nx-b_n\right)^2\)

\(\Rightarrow f\left(x\right)\ge0\) với mọi x

Mặt khác : \(f\left(x\right)=\left(a_1^2+...+a_n^2\right)x^2-2\left(a_1b_1+...+a_nb_n\right)x+\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\Delta'\le0\)

\(\Rightarrow\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_n^2\right)\)

\(\Rightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_{1^{ }}^2+...+b_n^2\right)}\)

Bình luận (0)
Trần Trung Nguyên
20 tháng 12 2018 lúc 20:09

Áp dụng bđt bunhia copski, ta có \(\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)\Leftrightarrow\sqrt{\left(a_1b_1+...+a_nb_n\right)^2}\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\Leftrightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)

Dấu bằng xảy ra khi \(\dfrac{a_1}{b_1}=...=\dfrac{a_n}{b_n}\)

Vậy \(\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)

Bình luận (0)
Phạm Ngọc Thạch
Xem chi tiết
Đỗ Lê Tú Linh
26 tháng 5 2015 lúc 10:42

nhưng mk thấy khó, mk ko biết làm, vậy có được k,?

Bình luận (0)