Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho các số \(x\) và \(y\) có dạng :

\(x=a_1\sqrt{2}+b_1\) và \(y=a_2\sqrt{2}+b_2\)

trong đó \(a_1,a_2,b_1,b_2\) là các số hữu tỉ. Chứng minh 

a) \(x+y\) và \(x.y\) cũng có dạng \(a\sqrt{2}+b\) với a và b là số hữu tỉ

b) \(\dfrac{x}{y}\) với \(y\ne0\) cũng có dạng \(a\sqrt{2}+b\) với a và b là số hữu tỉ

nhi nguyễn
26 tháng 5 2017 lúc 22:36

a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

Nguyen Thuy Hoa
27 tháng 5 2017 lúc 10:49

Căn bậc hai. Căn bậc ba


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nga Phạm
Xem chi tiết
Nga Phạm
Xem chi tiết
phamthiminhanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
phamthiminhanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tạ Uyên
Xem chi tiết