Cho tam giác ABC vuông tại A có AB=6cm , tangB=5/12 . Tính AC,BC
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
1. Cho tam giác ABC đường cao AH và trung tuyến AM chia góc A thành 3 góc = nhau, K thuộc AC:AK=AH.CMR: a) góc AKM vuông b) Tính các góc của tam giác ABC
2. Cho tam giác ABC đều. D thuộc BC :BD=1/3 BC. ĐỂ vuông góc với BC ( E thuộc AB ). DF vuông góc với AC ( F thuộc AC ). Chứng minh a) BD =CF b) tam giác DEF đều
3. Cho tam giác ABC vuông tại A: AB = 15 cm, AC =20 cm., AH =12cm. Tính AB và AC
5. Cho tam giác ABC có AB =AC =5 cm, BC =6cm, đường phân giác AF. CMR: a) FB =FD, AF vuông góc với BC b) AF=?
4. Cho tam giác ABC vuông tại A, đường cao AH =6cm, BC =12,5cm, tỉ số HB :HC=9:16. Tính AB, AC
6. Cho tam giác ABC : BC =7,5cm, CA =4,5cm, AB =6cm. Hỏi tam giác ABC là tam giác gì?
7. Cho hình chữ nhật ABCD : AC=29cm, CD =20 cm. Tính diện tích hình chữ nhật
cho tam giác abc vuông tại A có AB = 6cm AC = 8cm a) tính BC b) tia phân giác của góc ABC cắt AC tại K kẻ KH vuông BC tại H
a: BC=10cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
cho tam giác abc có ab=6cm,ac=8cm,bc=10cm. Kẻ ah vuông góc vs bc tại h 1 chứng minh tam giác abc vuông tại a 2 tính diện tích tam giác abc 3 tính AH
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
Ta có: BC2=102=100
AB2+AC2=62+82=100
Vậy BC2=AB2+AC2
Xét ΔABC có:
BC2=AB2+AC2
Nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: ΔABC vuông tại A(gt)
Nên
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
cho tam giác ABC vuông tại A có AB=6cm AC=8cm.
a) tính độ dài cạnh BC và chu vi tam giác ABC.
b)đường phân giác của góc B cắt AC tại D. Vẽ DH vuông với BC(H thuộc BC). Chứng minh: AB=HB
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)