Giải giúp mình bài này với gấp lắm
1) cos5x.cosx =cos4x
2)sinx.sin2x.sin3x = \(\dfrac{1}{4}\) sin4x
giải gấp giúp em chi tiết 3 bài này với ạ
a) sin4x +cos4x = √3
b) 3sinx + √3.cosx = 1
c) √3.cosx + sinx = - √2
a.
\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sin4x+\dfrac{\sqrt{2}}{2}cos4x=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow cos4x.cos\left(\dfrac{\pi}{4}\right)+sin4x.sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\dfrac{\pi}{4}=arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\\4x-\dfrac{\pi}{4}=-arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{16}-\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\end{matrix}\right.\)
b.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow cosx.cos\left(\dfrac{\pi}{3}\right)+sinx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x-\dfrac{\pi}{3}=-arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x=\dfrac{\pi}{3}-arrcos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow cosx.cos\left(\dfrac{\pi}{6}\right)+sinx.sin\left(\dfrac{\pi}{6}\right)=cos\left(\dfrac{3\pi}{4}\right)\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=cos\left(\dfrac{3\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{3\pi}{4}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)
Giúp mình 1 trong 2 bài này với ạ. Nếu được thì giải 2 bài này giúp mk với. Mình đang cần gấp lắm ạ 😢
jimmmmmmmmmmmmmmmmmmmmmmmmmmm
he he he he he he
bài 1:
bn lấy giá trị của √(4^2-3,9^2) là dc
bài 2
AB+BC=2√(3^2+4^2)=??
Mn ơi giúp e bài này với ạ, e cần gấp lắm. E sắp thi cuối năm r ạ hmu-
\(\dfrac{1}{9+x}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
E cảm ơn mn nhìu lắm!!! Mọng mn giải chi tiết cho e hiểu ạ hyhy XĐ
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
É ô ét ai giúp mình bài này với ạ, sẵn tiện giải thích cho mình với được ko ạ hiện giờ mình đang cần gấp lắm ạ mai mình thi rồi nên mong cao nhân nào giải bài với giải thích bài này cho mình với ạ
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}\) \(\dfrac{2^{11}.9^3}{3^5.16^2}\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
Cos4x + sin4x + cost ( Π - Π/4 ) - sin ( 3x - Π/4 ) - 3/2 = 0
Giúp mình với nhé cảm ơn ạ !!!!
Cho \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}=\dfrac{1}{2}\)
Tính cos 8x
\(sin\dfrac{3x}{2}\left(cosx+cos4x+cos7x\right)\)
\(=\)\(sin\dfrac{3x}{2}.cosx+sin\dfrac{3x}{2}.cos4x+sin\dfrac{3x}{2}.cos7x=\dfrac{1}{2}\left[sin\dfrac{x}{2}+sin\dfrac{5x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{5x}{2}\right)+sin\dfrac{11x}{2}\right]+\dfrac{1}{2}\left[sin\left(-\dfrac{11x}{2}\right)+sin\dfrac{17x}{2}\right]\)
\(=\dfrac{1}{2}\left(sin\dfrac{x}{2}+sin\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.2.sin\dfrac{9x}{2}.cos4x=sin\dfrac{9x}{2}.cos4x\)
\(sin\dfrac{3x}{2}\left(sinx+sin4x+sin7x\right)\)
\(=sin\dfrac{3x}{2}.sinx+sin\dfrac{3x}{2}.sin4x+sin\dfrac{3x}{2}.sin7x\)\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{5x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-5x}{2}-cos\dfrac{11x}{2}\right)+\dfrac{1}{2}\left(cos\dfrac{-11x}{2}-cos\dfrac{17x}{2}\right)\)
\(=\dfrac{1}{2}\left(cos\dfrac{x}{2}-cos\dfrac{17x}{2}\right)\)\(=\dfrac{1}{2}.-2.sin\dfrac{9x}{2}.sin\left(-4x\right)=sin\dfrac{9x}{2}.sin4x\)
Có \(\dfrac{cos7x+cos4x+cosx}{sin7x+sin4x+sinx}\)
\(=\dfrac{sin\dfrac{3x}{2}\left(cos7x+cos4x+cosx\right)}{sin\dfrac{3x}{2}\left(sin7x+sin4x+sinx\right)}\)\(=\dfrac{sin\dfrac{9x}{2}.cos4x}{sin\dfrac{9x}{2}.sin4x}\)\(=\dfrac{cos4x}{sin4x}\)
\(\Rightarrow\dfrac{cos4x}{sin4x}=\dfrac{1}{2}\)
\(\Leftrightarrow2cos4x=sin4x\)
\(\Leftrightarrow4.cos^24x=sin^24x\)
\(\Leftrightarrow4.cos^24x=1-cos^24x\)\(\Leftrightarrow cos^24x=\dfrac{1}{5}\Leftrightarrow\dfrac{1+cos8x}{2}=\dfrac{1}{5}\)
\(\Leftrightarrow cos8x=-\dfrac{3}{5}\)
Vậy..
Bài 2: Tìm x,y,z biết
h) \(\dfrac{x}{y}\) = \(\dfrac{9}{10}\) và y - x = 120
k) \(\dfrac{x}{y}\) = \(\dfrac{3}{4}\) và -3x + 5y = 33
Mg giải gấp giúp mình với mình tht sự gấp lắm ạ TT
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
Giúp mình giải bài này với mình cần gấp lắm ...
Chứng tỏ rằng:
2^3.2^4=2^7
\(2^3.2^4=2^{3+\text{4}}=2^7\)
Ta có: 23 . 24 = 23+4 = 27
Theo công thức: am . an = am+n
ví dụ: 21 . 22 = 2 . 4 = 8 = 23 = 21+2
Chuk bn hok tốt!
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290