Giải phương trình nghiệm nguyên sau: 2x+7=y2
Tìm các nghiệm nguyên của phương trình sau: 7(x2+y2) = 25(x+y)
giải phương trình nghiệm nguyên : x2 = y2
Giải phương trình nghiệm nguyên 7(x+y)=3(x2−xy+y2)
Giúp mình với các bạn!
Tìm giải phương trình nghiệm nguyên : x2 = y2
giải phương trình nghiệm nguyên : x2-x=y2-1
Tìm nghiệm nguyên (x;y) của phương trình: 2x - y2 + 57 =0
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$
Lời giải:
Hiển nhiên $x\geq 0$
Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$
$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$
$\Rightarrow x$ chẵn.
Đặt $x=2a$ với $a$ là số tự nhiên.
Khi đó: $2^{2a}-y^2=-57$
$\Leftrightarrow (2^a-y)(2^a+y)=-57$
Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$
Giải phương trình nghiệm nguyên: (3x + 2y)(2x - y)2 = 7(x + y) -2
Giải phương trình nghiệm nguyên: (3x + 2y)(2x - y)2 = 7(x + y) -2
\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)
Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:
\(ab^2-3a+b+2=0\)
\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)
\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)
\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)
\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)
mà 2 không chính phương
\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)
đến đây bạn tự giải tiếp
Tìm nghiệm nguyên của phương trình sau: 2x +3y=7
\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)
PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)
- Với \(y=-3\) có: \(x=1\).
- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)
Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.
giải phương trình nghiệm nguyên: x+y+xy=x2+y2
\(x+y+xy=x^2+y^2\)
⇔ \(2xy+2x+2y=2x^2+2y^2\)
⇔ \(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
⇔ \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
⇔
⇔
Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).