Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 3:07

Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2018 lúc 3:33

Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

Sách Giáo Khoa
Xem chi tiết
VinZoi Couple
25 tháng 4 2017 lúc 14:54

Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 5 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khùng Điên
25 tháng 4 2017 lúc 16:59

Đặt AH = x (x > 0)

Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có: AC2 = AB.AH

hay 152 = (x + 16)x ⇔ x2 + 16x -225 = 0

Giải phương trình, ta được x1 = 9 (thỏa mãn); x2 = -25 (loại)

Vậy AH = 9 (cm)

Ta có: HC2 = AH. HB = 9. 16 = 144

⇒ HC = 12 (cm)

Vậy diện tích tam gaics ABC là:

Lê Thùy Dung
Xem chi tiết
Huy Hoang
16 tháng 10 2020 lúc 15:04

A B C H 15 x 16

Đặt AH = x ( x > 0 ) , ta có :

\(AC^2=AH.AB\)

\(\Leftrightarrow15^2=x\left(x+16\right)\)

\(\Leftrightarrow x^2+16x-225=0\)

Giải phương trình , ta được : \(x_1=9\)

                                              \(x_2=-25\)( loại )

Vậy AH = 9 , suy ra :

\(CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-9^2}=12\)

=> Diện tích tam giác ABC là :

\(S_{ABC}=\frac{1}{2}AB.CH=\frac{1}{2}\left(9+16\right).12=150\left(cm^{^2}\right)\)

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
Trọng Khiêm Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 21:04

Ta có: \(AC^2=CH\cdot BC\)

\(\Leftrightarrow CH^2+16HC-225=0\)

\(\Leftrightarrow CH^2+25HC-9HC-225=0\)

\(\Leftrightarrow CH=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AH^2=15^2-9^2=144\)

hay AH=12cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20cm

Ta có: BC=BH+HC

nên BC=9+16=25cm

Hoàng Tú Đoan Như
Xem chi tiết
LxP nGuyỄn hÒAnG vŨ
3 tháng 8 2015 lúc 5:25

  theo hệ thức lượng tam giác vuông 
AC^2 = HC*BC = 16*BC (1) 
AH^2 = HC*BH = 16*BH (2) 
1/AH^2 = 1/AC^2 + 1/AB^2 (3) 
thay 1,2 vào 3: 
1/16*BH = 1/16*BC + 1/15^2 (4) 
mặt khác: 
BH = BC - HC = BC -16 
thay vào 4: 
1/16*(BC -16) = 1/16*BC + 1/225 
<=> 1/(BC - 16) - 1/BC = 16/225 
<=> (BC -BC +16)/((BC - 16)*BC) =16/225 
<=> BC^2 - 16*BC - 225 = 0 
=> BC = 25 (thỏa mãn) BC = -9 (loại) 
thay vào 1 ta có AC = 20 cm 
2 ta có AH = 12 cm 
Cố lên bạn nha!

Tấn Thanh
5 tháng 6 2016 lúc 21:22

Đặt HB=x(cm,x>0) => BC=HB+HC=x+16

Ta có: Tam giác ABC vuông tại A có AH là đường cao

=>AB2=HB.BC

=>152=x.(x+16)

=>225=x2+16x

=>x2+16x-225=0

=>x2+25x-9x-225=0

=>x.(x+25)-9.(x+25)=0

=>(x+25).(x-9)=0

=>x=-25(loại) hay x=9(nhận)

Vậy HB=9(cm)

Ta có: AH2=HB.HC(hệ thức lượng)

=>AH2=9.16=144

=AH=12(cm)

Ta có: AC2=HC.BC(hệ thức lượng)

=>AC2=16.25=400

=>AC=20(cm)

Ta có: BC=HB+HC=9+16=25(cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2018 lúc 11:54

Gọi D là giao điểm của AC và đường vuông góc với BC tại E.

Xét ΔAHC và ΔABC có C chung và A H C ^ = B A C ^ = 90 ∘ nên ΔAHC ~ ΔBAC (g-g)

Ta có S D E C = 1 2 S A B C (1), S A H C : S A B C = 18 25 (2).

Từ (1) và (2) suy ra

S D E C : S A H C = 1 2 : 18 25 = 25 36 = ( 5 6 ) 2   3

Vì DE // AH (cùng vuông với BC) duy ra ΔDEC ~ ΔAHC nên

S D E C : S A H C = ( E C H C ) 2 (4)

Từ (3) và (4) suy ra E C H C = 5 6  tức là E C 18 = 5 6 => EC = 15cm.

Đáp án: A

Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)