\(\sqrt{c^2d-cd^2}\)+ c + d
Chứng minh rằng trong các số: \(2a+b-2\sqrt{cd};2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc}\) có ít nhất một số dương trong đó a,b,c,d là các số dương
Cho a,b,c,d thoa ab+bc+cd+da =1
cmr \(a^2+2b^2+c^2+2d^2\ge\sqrt{2}\)
Dễ có các bất đẳng thức sau: (chứng minh bằng cách chuyển vế và phân tích...)
\(\frac{a^2}{2}+b^2\ge\sqrt{2}ab\)
\(b^2+\frac{c^2}{2}\ge\sqrt{2}bc\)
\(\frac{c^2}{2}+d^2\ge\sqrt{2}cd\)
\(d^2+\frac{a^2}{2}\ge\sqrt{2}da\)
Cộng lại là xong.
Hoặc SOS cho nó:
\(VT-VP=\frac{1}{4}\left[2\left(a-c\right)^2+\left(a+c-2\sqrt{2}b\right)^2+\left(a+c-2\sqrt{2}d\right)^2\right]\)
Hoặc kinh khủng hơn:
\(4\left(a^2+b^2\right)\left(VT-VP\right)=2\left(a^2+b^2\right)\left(a-c\right)^2+\left(a^2-ab+ac-2\sqrt{2}ad+2\sqrt{2}b^2-bc\right)^2+\left(a^2+ac+\left(1-2\sqrt{2}\right)ab+bc-2\sqrt{2}bd\right)^2\)
\(\ge0\)
Cho a,b,c,d là các số dương
Chứng tỏ có có it nhất hai số dưới đây là số dương
\(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{da};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)
cho a,b,c,d dương. c/m trong các số :
\(2a+b-2\sqrt{cd}\) ; \(2b+c-2\sqrt{ad}\) ;\(2c+d-2\sqrt{ab}\) ; \(2d+a-2\sqrt{bc}\)
có ít nhất một số dương
cộng 4 biểu thức lại ta có:
\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)+\left(d-2\sqrt{da}+a\right)+a+b+c+d\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+\left(\sqrt{d}-\sqrt{a}\right)^2+a+b+c+d>0\)
g/s 4 biểu thức đó đều âm=>tổng của chúng âm
=>1 trong 4 biểu thức có 1 biểu thức là số dương
chỉ có 1 biểu thức là số dương.
Cho 4 số dương a,b,c,d. Đặt \(x=2a+b-2\sqrt{cd},y=2b+c-2\sqrt{ad},\)
\(z=2c+d-2\sqrt{ab},t=2d+a-2\sqrt{bc}\). Chứng minh rằng trong 4 số x,y,z,t có ít nhất 2 số dương
1. Tìm GTLN của: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\) với \(a,b>0\) và \(a+b\le1\)
2. Chmr trong các số: \(2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc};2a+b-2\sqrt{cd}\)có ít nhất hai số dương \(\left(a,b,c,d>0\right)\)
Áp dụng BĐT Bunhia- cốp -xki ta có
\(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)
Vậy maxM =2 \(\Leftrightarrow a=b=\frac{1}{2}\)
Cho bốn số dương a, b, c, d. Đặt:
x=2a+b-\(2\sqrt{cd}\); y=2b+c-\(2\sqrt{da}\); z=2c+d-\(2\sqrt{ab}\);t=2d+a-\(2\sqrt{bc}\)
CMR: trong bốn số x, y, z, t có ít nhất 2 số dương.
nhấn vào đây nha: [Đại số] Một bài toán chứng minh sự tồn tại. | HOCMAI Forum - Cộng đồng học sinh Việt Nam
hì hì ok nha!! 7655685795325325454364561253454364565464575678568788978676
Cho các số : \(x=2a+b-2\sqrt{cd}\)
\(y=2b+c-2\sqrt{ad}\)
\(z=2c+d-2\sqrt{ab}\)
\(t=2d+a-2\sqrt{bc}\)
với a,b,c,d >0 . CMR : tồn tại ít nhất có 2 số dương trong 4 số trên
Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)
\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)
\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.
Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)
Từ (1) và (2) ta có điều phải chứng minh.
1. Tìm GTNN và GTLN của: \(A=\sqrt{1-x}+\sqrt{1+x}\)
2. Chmr trong các số: \(2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc};2a+b-2\sqrt{cd}\) có ít nhất 2 số dương \(\left(a,b,c,d>0\right)\)
3. Chmr nếu các đoạn thẳng có độ dài a, b, c lập đc thành một tam giác thì các đoạn thẳng có độ dài \(\sqrt{a},\sqrt{b},\sqrt{c}\) cx lập được thành một tam giác
1. ĐKXĐ: \(-1\le x\le1\)
\(A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\ge2\)
\(\Rightarrow A\ge\sqrt{2}\). Vậy min A = \(\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\le2+1-x+1+x=4\)
\(\Rightarrow A\le2\). Vậy max A = 2\(\Leftrightarrow x=0\)(thỏa mãn)