Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Linh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 14:01

\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)

JakiNatsumi
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 21:00

Ta có: \(M=\dfrac{a^2-3a\sqrt{a}+2}{a-3\sqrt{a}}\)

\(=\dfrac{a^2-a\sqrt{a}-2a\sqrt{a}+2}{a-3\sqrt{a}}\)

\(=\dfrac{a\sqrt{a}\left(\sqrt{a}-1\right)-2\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

 

Phan Thị Hương Ly
Xem chi tiết
Trần Quốc Lộc
25 tháng 7 2018 lúc 18:21

\(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=\dfrac{\sqrt{a}-2+4}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\)

Đặt \(\dfrac{4}{\sqrt{a}-2}=k\left(k\in Z\right)\)

\(\Rightarrow\sqrt{a}k-2k=4\\ \Rightarrow\sqrt{a}=\dfrac{4+2k}{k}\\ \Rightarrow\dfrac{2k+4}{k}\ge0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2k+4\ge0\\k>0\end{matrix}\right.\\\left\{{}\begin{matrix}2k+4\le0\\k>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}k\ge-2\\k>0\end{matrix}\right.\\\left\{{}\begin{matrix}k\le-2\\k< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k>0\\k< -2\end{matrix}\right.\)

\(\Rightarrow a=\left(\dfrac{2k+4}{k}\right)^2\)

Vậy để M nhận giá trị dương thì \(a=\left(\dfrac{2k+4}{k}\right)^2\) với \(k>0\text{ }hoặc\text{ }k\le-2\)

Phùng Tuệ Minh
25 tháng 7 2018 lúc 15:46

ĐK: a ≥0, a≠4

a) \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=\dfrac{\sqrt{a}-2+4}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\)

Để M ∈ Z thì \(\dfrac{4}{\sqrt{a}-2}\) ∈ Z

⇒ 4 ⋮ \(\sqrt{a}-2\)

\(\sqrt{a}-2\) ∈ Ư(4)={-4; -2; -1;1; 2; 4}

Lập bảng

\(\sqrt{a}-2\) -4 -2 -1 1 2 4
\(\sqrt{a}\) -2 0 1 3 4 6
a 0 1 9 16 36
loại tm tm tm tm tm

Vậy khi a ∈ {0;1;9;16;36} thì M ∈ Z

Khánh My
Xem chi tiết
Mysterious Person
20 tháng 10 2018 lúc 19:48

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 9 2021 lúc 20:49

\(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=\dfrac{\sqrt{a}-2}{\sqrt{a}-2}+\dfrac{4}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\in Z\)

\(\Rightarrow\sqrt{a}-2\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do \(\sqrt{a}\ge0\)

\(\Leftrightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)

\(\Rightarrow a\in\left\{9;1;16;0;36\right\}\)

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 20:51

Đề yêu cầu tìm a nguyên thì đúng hơn.

Vì yêu cầu tìm a hữu tỉ bài này sẽ có vô số số hữu tỉ thỏa mãn

Nhan Thanh
7 tháng 9 2021 lúc 20:55

Ta có \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\)

Để \(M\) nhận giá trị nguyên thì \(4⋮\left(\sqrt{a}-2\right)\Rightarrow\left(\sqrt{a}-2\right)\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{a}-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)

\(\Rightarrow a\in\left\{\sqrt{3};1;2;0;\sqrt{6}\right\}\)

mà a là số hữu tỉ nên \(a\in\left\{1;2;0\right\}\)

123 nhan
Xem chi tiết
⭐Hannie⭐
6 tháng 8 2023 lúc 11:23

\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)

__

Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)

\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)

 

 

Phạm Thị Mỹ Dung
Xem chi tiết
Lê An Nguyễn
Xem chi tiết
Nguyễn Tấn An
23 tháng 7 2018 lúc 11:44

a) ĐKXĐ: \(x\ge0;x\ne9\) . Rút gọn: \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x-2\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{x+\sqrt{x}-3\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{x-4\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-3\sqrt{x}-2\sqrt{x}+6+x+\sqrt{x}+3\sqrt{x}+3-x+4\sqrt{x}-7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x+\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

Nguyễn Tấn An
23 tháng 7 2018 lúc 11:53

A>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)>-1\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+1>0\Leftrightarrow\dfrac{\sqrt{x}+2+\sqrt{x}-3}{\sqrt{x}-3}>0\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2\sqrt{x}-1>0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}2\sqrt{x}-1< 0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>0,5\\\sqrt{x}>3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 0,5\\\sqrt{x}< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0,25\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0,25\\x< 9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow}}\left[{}\begin{matrix}x>9\\0\le x< 0,25\end{matrix}\right.\)