\(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=\dfrac{\sqrt{a}-2}{\sqrt{a}-2}+\dfrac{4}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\in Z\)
\(\Rightarrow\sqrt{a}-2\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do \(\sqrt{a}\ge0\)
\(\Leftrightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)
\(\Rightarrow a\in\left\{9;1;16;0;36\right\}\)
Đề yêu cầu tìm a nguyên thì đúng hơn.
Vì yêu cầu tìm a hữu tỉ bài này sẽ có vô số số hữu tỉ thỏa mãn
Ta có \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\)
Để \(M\) nhận giá trị nguyên thì \(4⋮\left(\sqrt{a}-2\right)\Rightarrow\left(\sqrt{a}-2\right)\inƯ\left(4\right)\)
\(\Rightarrow\sqrt{a}-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)
\(\Rightarrow a\in\left\{\sqrt{3};1;2;0;\sqrt{6}\right\}\)
mà a là số hữu tỉ nên \(a\in\left\{1;2;0\right\}\)
Để M là số nguyên thì \(4⋮\sqrt{a}-2\)
\(\Leftrightarrow\sqrt{a}-2\in\left\{-2;-1;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{a}\in\left\{0;1;3;4;6\right\}\)
hay \(a\in\left\{0;1;9;16;36\right\}\)