Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho biểu thức: \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\). Tìm các số hữu tỉ a để M thuộc Z

Lấp La Lấp Lánh
7 tháng 9 2021 lúc 20:49

\(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=\dfrac{\sqrt{a}-2}{\sqrt{a}-2}+\dfrac{4}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\in Z\)

\(\Rightarrow\sqrt{a}-2\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do \(\sqrt{a}\ge0\)

\(\Leftrightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)

\(\Rightarrow a\in\left\{9;1;16;0;36\right\}\)

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 20:51

Đề yêu cầu tìm a nguyên thì đúng hơn.

Vì yêu cầu tìm a hữu tỉ bài này sẽ có vô số số hữu tỉ thỏa mãn

Nhan Thanh
7 tháng 9 2021 lúc 20:55

Ta có \(M=\dfrac{\sqrt{a}+2}{\sqrt{a}-2}=1+\dfrac{4}{\sqrt{a}-2}\)

Để \(M\) nhận giá trị nguyên thì \(4⋮\left(\sqrt{a}-2\right)\Rightarrow\left(\sqrt{a}-2\right)\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{a}-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{3;1;4;0;6\right\}\)

\(\Rightarrow a\in\left\{\sqrt{3};1;2;0;\sqrt{6}\right\}\)

mà a là số hữu tỉ nên \(a\in\left\{1;2;0\right\}\)

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 20:57

Để M là số nguyên thì \(4⋮\sqrt{a}-2\)

\(\Leftrightarrow\sqrt{a}-2\in\left\{-2;-1;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{a}\in\left\{0;1;3;4;6\right\}\)

hay \(a\in\left\{0;1;9;16;36\right\}\)


Các câu hỏi tương tự
:vvv
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Minh
Xem chi tiết
Big City Boy
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
JakiNatsumi
Xem chi tiết