Giải giúp mình với ạ
Tìm m để hàm số y=x^2+2(m+2)x+3 đồng biến trên khoảng (-3:7)
1.Cho hàm số y=(\(\dfrac{m-2}{m+3}\))x-2
a.Tìm m để hàm số trên là hàm sô bậc nhất.
b.Tìm m để hàm số trên là đồng biến.
2.Vẽ đô thị hàm số y=-x +3 và y=2x+1 trên cùng 1 hệ trục tọa độ.
Trả lời giúp mình với ạ!Mình cảm ơn!
Cho hàm số y=(\(\dfrac{m-2}{m+3}\))x-2
a.Tìm m để hàm số trên là hàm số bậc nhất.
b.Tìm m để hàm số trên là hàm số đồng biến,nghịch biến.
Trà lời giúp mình với ạ!Mình cảm ơn!!!!
Lời giải:
a. Để hàm trên là hàm bậc nhất thì $\frac{m-2}{m+3}\neq 0$
\(\Leftrightarrow \left\{\begin{matrix} m-2\neq 0\\ m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 2\\ m\neq -3\end{matrix}\right.\)
b. Để hàm trên đồng biến thì $\frac{m-2}{m+3}>0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} m-2>0\\ m+3>0\end{matrix}\right.\\ \left\{\begin{matrix} m-2<0\\ m+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>2\\ m< -3\end{matrix}\right.\)
Để hàm trên nghịch biến thì $\frac{m-2}{m+3}< 0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} m-2>0\\ m+3< 0\end{matrix}\right.\\ \left\{\begin{matrix} m-2< 0\\ m+3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3> m>2(\text{vô lý}\\ -3< m< 2\end{matrix}\right.\Leftrightarrow -3< m< 2\)
1.Cho hàm số y=(m−2m+3m−2m+3)x-2
a.Tìm m để hàm số trên là hàm sô bậc nhất.
b.Tìm m để hàm số trên là đồng biến.
2.Vẽ đô thị hàm số y=-x +3 và y=2x+1 trên cùng 1 hệ trục tọa độ.
Trả lời giúp mình với ạ!Mình cảm ơn!
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
1) hàm số \(y=\dfrac{x+5}{x+m}\) đồng biến trên khoảng (\(-\infty\),-8)
2) hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng (\(-\infty\),-7)
3) hàm số \(y=\dfrac{x+2}{x+m}\) đồng biến trên khoảng (\(-\infty\),-5)
Tìm các giá trị của tham số m để hàm số y=1/3x^3-mx^2+(2m-1)x-m+2 nghịch biến trên khoảng (-2;0)
giúp em với ạ .
Bạn tham khảo, nguồn mạng :
Ps : không thấy ảnh ib, nhớ k ạ
# Aeri #
Cho hàm số \(y=-\frac{2}{3}x^3+\left(m+1\right)x^2+2mx+5\), với tham số thực. Tìm m để hàm số đồng biến trên khoảng (0;2)
Ta có \(y'=-2x^2+2\left(m+1\right)x+2m\)
Hàm số đồng biến trên khoảng (0;2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\) (*)
Vì y'(x) liên tục tại x=0 và x=2 nên (*) \(\Leftrightarrow y'\ge0,x\in\left[0;2\right]\)
\(\Leftrightarrow-2x^2+2\left(m+1\right)x+2m\ge0,x\in\left[0;2\right]\)
\(\Leftrightarrow m\left(x+1\right)\ge x^2-x,x\in\left[0;2\right]\Leftrightarrow m\ge g\left(x\right),x\in\left[0;2\right]\); (trong đó \(g\left(x\right)=\frac{x^2-x}{x+1}\))
\(\Leftrightarrow m\ge Max_{\left[0;2\right]}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=\frac{x^2-x}{x+1}\) trên đoạn \(\left[0;2\right]\)
\(\Rightarrow g'\left(x\right)=\frac{x^2+2x-1}{\left(x+1\right)^2}\Rightarrow g'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{2},x\in\left[0;2\right]\)
\(g\left(0\right);g\left(2\right)=\frac{2}{3};g\left(-1+\sqrt{2}\right)\Rightarrow Max_{\left(0;+\infty\right)}g\left(x\right)=\frac{2}{3}\) tại x=2
Vậy \(m\ge\frac{2}{3}\) thì hàm số đồng biến trên khoảng (0;2)
Ta có : \(y'=-2x^2+2\left(m+1\right)x+2m,\Delta'=m^2+6m+1\)
Suy ra hàm đồng biến trên khoảng (0; 2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\)(*)
Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow m^2+6m+1\le0\Leftrightarrow-3-2\sqrt{2}\le m\le-3+2\sqrt{2}\)
theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\) => (*) không thỏa mãn
Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow m^2+6m+1>0\Leftrightarrow m\le-3-2\sqrt{2}\) hoặc \(m\ge-3+2\sqrt{2}\) thì (*) đúng
<=> phương trình \(y'=0\) có 2 nghiệm phân biệt \(x_1;x_2\) (\(x_1\)>\(x_2\)) và thỏa mãn \(x_1\le0<2\le x_2\)
\(\Leftrightarrow\begin{cases}\Delta>0\\x_1\le0<2\le x_2\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x_1-2\right)\left(x_2-2\right)\le0\\\Delta>0\\\left(x_1-0\right)\left(x_2-0\right)\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}x_1x_2-2\left(x_1+x_2\right)+4\le0\\\Delta>0\\x_1x_2\le0\end{cases}\)
\(\Leftrightarrow m\ge\frac{2}{3}\)
Kết hợp trường hợp 1 và trường hợp 2 ta có \(m\ge\frac{2}{3}\) thì hàm đồng biến trên khoảng (0;2)
1. Tìm k để các hàm số đồng biến trên R a. y = kx -3 b. y= 2kx + 1 c. y = (4k + 2)x + 1 Giúp mình với ạ
a: Để hàm số y=kx-3 đồng biến trên R thì k>0
b: Để hàm số y=2kx+1 đồng biến trên R thì 2k>0
=>k>0
c: Để hàm số \(y=\left(4k+2\right)x+1\) đồng biến trên R thì 4k+2>0
=>4k>-2
=>\(k>-\dfrac{1}{2}\)
Để hàm số đồng biến trên R thì:
a) k > 0
b) 2k > 0
⇔ k > 0
c) 4k + 2 > 0
⇔ 4k > -2
⇔ k > -1/2
3. Cho hàm số y = x^2- m^2+2m +1 /x -m . Tìm tập hợp các giá trị của tham số m để hàm số đồng biến trên khoảng xác định của nó?
\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?
\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên các khoảng xác định khi và chỉ khi:
\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)
\(\Leftrightarrow m\le-\dfrac{1}{2}\)
tìm các giá trị của m để hàm số
\(y=mx^2-2\left(m-15\right)x+3-m\)
đồng biến trên khoảng (2;9)
TH1: \(m=0\Rightarrow y=30x+3\) đồng biến trên R (thỏa mãn)
TH2: \(m>0\Rightarrow\) hàm đồng biến trên \(\left(\dfrac{m-15}{m};+\infty\right)\)
Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\le2\Rightarrow m\ge-15\Rightarrow m>0\)
TH3: \(m< 0\Rightarrow\) hàm đồng biến trên \(\left(-\infty;\dfrac{m-15}{m}\right)\)
Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\ge9\)
\(\Rightarrow m-15\le9m\Rightarrow-\dfrac{15}{8}\le m< 0\)
Vậy \(m\ge-\dfrac{15}{8}\)
Cho hàm số \(y=-\frac{m-1}{3}x^3+\left(m+2\right)x^2+3mx+5\), với m là tham số thực. Tìm m để hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)
Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)
Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)
và mọi x thuộc (-\(-\infty;2\) ] (*)
\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]
\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))
\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn (-\(-\infty;2\) ]
\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]
\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên (-\(-\infty;2\) ]
\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)
Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)