viết các biểu thức dưới dạng tích
1/27 + x3
Viết các biểu thức sau dưới dạng tích:
a) x 3 + 8; b) x 3 – 64;
c) 27 x 3 + 1; d) 64 m 3 – 27.
Viết các biểu thức sau dưới dạng một tích hai đa thức
a , 27 + x3 b , 64x3 + 0,001 c , 8 - 27x3 d , x3/125 - y3/27
Giúp em
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
a) \(27+x^3=3^3+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b) \(64x^3+0,001=\left(4x\right)^3+\left(\dfrac{1}{10}\right)^3=\left(4x+\dfrac{1}{10}\right)\left(16x^2-\dfrac{4x}{10}+\dfrac{1}{100}\right)\)
a/\(27+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b/ \(64x^3+0,001=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\)
c/ \(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d/ \(\dfrac{x^3}{125}-\dfrac{y^3}{27}=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
Bài 1. Viết các biểu thức sau dưới dạng tích
a) x3+8 b) x3-64
c) 27x3+1 d) 64m3-27
Bài 2.Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x+5)(x2-5x+25) b) (1-x)(x2+x+1)
c) (y+3t)(9t2-3yt+y2)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
2)
a)
\(=x^3+125\)
\(\)b)\(=1-x^3\)
c)
=\(y^3+27t^3\)
Viết các biểu thức sau dưới dạng lập phương của tổng (hiệu).
a) x3-6x2+12x-8 b) 8-12x+6x2-x3
c)x3+x2+\(\dfrac{1}{3}\)x+\(\dfrac{1}{27}\) d) \(\dfrac{x^3}{8}\)+\(\dfrac{3}{4}\)x2y+\(\dfrac{3}{2}\)xy2+y3 e) (x-1)3-15.(x-1)2+75.(x-1)-125
a)
=(x-2)3
b)\(\left(2-x\right)^3\)
c)\(\left(x+\dfrac{1}{3}\right)^3\)
d)\(\left(\dfrac{x}{2}+y\right)^3\)
e)
\(=\left(x-1\right)^2\left(x-1-15\right)+25\left[3\left(x-1\right)-5\right]\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-3-5\right)\)
\(=\left(x-1\right)^2\left(x-16\right)+25\left(3x-8\right)\)
Viết các biểu thức sau dưới dạng tích.
A)x3+27
B)x3-1/8
C)8x3+y3
D)8x3-27y3
A) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
B) \(x^3-\dfrac{1}{8}\)
\(=x^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
C) \(8x^3+y^3\)
\(=\left(2x\right)^3+y^3\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
D) \(8x^3-27y^3\)
\(=\left(2x\right)^3-\left(3y\right)^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
a)\(\left(x+3\right)\left(x^2-3x+9\right)\)
b)\(\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
c)\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
d)\(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
viết các biểu thức sau dưới dạng tích :
a) 1 - x3/8
b) 27x3 + 1
c) 64x3 - 27y3
a: \(1-\dfrac{x^3}{8}=\left(1-\dfrac{1}{2}x\right)\left(1+\dfrac{1}{2}x+\dfrac{1}{4}x^2\right)\)
b: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
c: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
Bài 1: Viết các biểu thức sau dưới dạng tích.
a, x3 + 8
b, 27x3 + 1
c, x3 + 27
d, 64x3 - 27y3
( Đây là hằng đẳng thức số 6 và 7)
Giúpppp mik zớiiiii:<
a: x^3+8=(x+2)(x^2-2x+4)
b: =(3x+1)(9x^2-3x+1)
c: =(x+3)(x^2-3x+9)
d: =(4x-3y)(16x^2+24xy+9y^2)
\(a.x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b.27x^3+1=\left(3x+1\right)\left(9x-3x+1\right)\)
\(c.x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
\(d.64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
Viết các biểu thức sau dưới dạng lập phương một tổng hoặc lập phương một hiệu hoặc tổng hai lập phương hoặc hiệu hai lập phương:
a) x3 + 6x2y + 12xy2 + 8y3
b) x3 - 3x2 + 3x -1
\(a,x^3+6x^2y+12xy^2+8y^3\\ =x^3+3.2x^2+3.2^2.x+\left(2y\right)^3\\ =\left(x+2y\right)^3\)
\(b,x^3-3x^2+3x-1\\ =x^3-3x^2.1+3x.1^2-1^3\\ =\left(x-1\right)^3\)
a) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+2\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
Viết các biểu thức sau dưới dạng tích
27-x^3
\(27-x^3=3^3-x^3=\left(3-x\right)\left(9+3x+x^2\right)\)
Viết biểu thức x 3 – 6 x 2 + 12 x – 8 dưới dạng lập phương của một hiệu
A. ( x + 4 ) 3
B. ( x – 4 ) 3
C. ( x + 2 ) 3
D. ( x - 2 ) 3
Ta có x 3 – 6 x 2 + 12 x – 8 = x 3 – 3 . x 2 . 2 + 3 . x . 2 2 – 2 3 = ( x – 2 ) 3
Đáp án cần chọn là: D