P=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}\)
a) Rút gọn
b) Tìm min P
c) Tìm x để Q=\(\dfrac{2\sqrt{x}}{P}\in Z\)
P=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}\)
a) Rút gọn
b) Tìm min P
c) Tìm x để Q=\(\dfrac{2\sqrt{x}}{P}\in Z\)
\(a.P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\left(x\ne1;x>0\right)\)
\(b.P=x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow P_{MIN}=\dfrac{3}{4}."="\Leftrightarrow x=\dfrac{1}{4}\)
Để em làm câu c cho 2 chị :3
\(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\)
Để \(Q\in Z\Leftrightarrow\) \(\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\in Z\) . Do đó ta cần 2 điều kiện sau :
ĐK1 : \(2\sqrt{x}\) chia hết cho \(x\)
ĐK2 : \(x\) thuộc số chính phương : \(\left(0;1;4;9;.......\right)\)
Xét ĐK1 : Ta có : \(2\sqrt{x}\le x^2\)
Do vậy nên \(2\sqrt{x}\) chia hết cho \(x^2\) khi và chỉ khi \(2\sqrt{x}=x^2\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) ( Thỏa mãn )
Vậy \(x=0\) hoặc \(x=1\) thì \(Q\in Z\)
(\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3x+3}{x-9}\)):(\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+3}-1\))
a) Rút gọn biểu thức
b) Tìm x để Q<\(\dfrac{-1}{2}\)
c) Tìm min Q
\(a,=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}-3}{\sqrt{x}+3}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-5}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}\)
a: \(=\dfrac{2x+6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
Cho P= \((\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{x}}):(\dfrac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^{2}})\)
a) Rút gọn P
b) so sánh P với \(\dfrac{3}{4}\).
c) tìm x để P=1
Cho biểu thức sau: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
1, Rút gọn P
2, Tính giá trị nhỏ nhất của P
3, Tìm \(x\in Z\) sao cho \(Q=\dfrac{2\sqrt{x}}{P}\in Z\)
1: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Câu 1: \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
a,Rút gọn Q
b, Tìm \(x\in Z\) để \(Q\in Z\)
1.
\(a,Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(x+7\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ Q=\dfrac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)
\(b,Q\in Z\Leftrightarrow\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-2\right)-8}{\sqrt{x}-2}\in Z\\ \Leftrightarrow-1-\dfrac{8}{\sqrt{x}-2}\in Z\)
Mà \(-1\in Z\Leftrightarrow\dfrac{8}{\sqrt{x}-2}\in Z\)
\(\Leftrightarrow8⋮\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{-8,-4,-2,-1,1,2,4,8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;1;3;4;6;10\right\}\)
Mà \(x\in Z\) và \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;4\right\}\\ \Leftrightarrow x\in\left\{0;1;4\right\}\)
Vậy \(x\in\left\{0;1;4\right\}\) thì \(Q\in Z\)
Cho A= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) và B= \(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x-1}\)
a) rút gọn B
b) Tìm x để \(\dfrac{B}{A}\)= \(\dfrac{1-\sqrt{x}}{2x^2}\)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)-\(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)+\(\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\) (x>0, x khác 1)
a) Rút gọn P
b) Tìm x để \(\dfrac{P}{2012\sqrt{x}}\) đạt GTNN
a) \(P=\dfrac{x^2-\sqrt[]{x}}{x+\sqrt[]{x}+1}-\dfrac{2x+\sqrt[]{x}}{\sqrt[]{x}}+\dfrac{2\left(x+\sqrt[]{x}-2\right)}{\sqrt[]{x}-1}\)
Điều kiện xác định \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left[\left(\sqrt[]{x}\right)^3-1\right]}{x+\sqrt[]{x}+1}-\dfrac{\sqrt[]{x}\left(2\sqrt[]{x}+1\right)}{\sqrt[]{x}}+\dfrac{2\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}\)
\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-1\right)\left(x+\sqrt[]{x}+1\right)}{x+\sqrt[]{x}+1}-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)
\(\Rightarrow P=\sqrt[]{x}\left(\sqrt[]{x}-1\right)-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)
\(\Rightarrow P=x-\sqrt[]{x}-2\sqrt[]{x}-1+2\sqrt[]{x}+4\)
\(\Rightarrow P=x-\sqrt[]{x}+3\)
b) \(A=\dfrac{P}{2012\sqrt[]{x}}=\dfrac{x-\sqrt[]{x}+3}{2012\sqrt[]{x}}\)\(\)
\(=\dfrac{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+3}{2012\sqrt[]{x}}\)
\(=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}{2012\sqrt[]{x}}\)
\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{\dfrac{11}{4}}{2012\sqrt[]{x}}=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\)
Ta lại có \(\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}\ge0,\forall x\ne0\)
\(\dfrac{1}{\sqrt[]{x}}>0\Rightarrow\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{4.2012}=\dfrac{11}{8048}\)
\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{8048}\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt[]{x}=1\Leftrightarrow x=1\)
Vậy \(GTNN\left(A\right)=\dfrac{11}{8048}\left(tạix=1\right)\)
\(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2.\left(\sqrt{x}+2\right)\)
\(=x-\sqrt{x}+3\)
b) \(\dfrac{P}{2012\sqrt{x}}=\dfrac{x-\sqrt{x}+3}{2012\sqrt{x}}=\dfrac{\sqrt{x}}{2012}-\dfrac{1}{2012}+\dfrac{3}{2012\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}}{2012}+\dfrac{3}{2012\sqrt{x}}\right)-\dfrac{1}{2012}\)
\(\ge2\sqrt{\dfrac{\sqrt{x}.3}{2012^2\sqrt{x}}}-\dfrac{1}{2012}\) (BĐT Cauchy)
\(=\dfrac{2\sqrt{3}}{2012}-\dfrac{1}{2012}=\dfrac{2\sqrt{3}-1}{2012}\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{x}}{2012}=\dfrac{3}{2012\sqrt{x}}\Leftrightarrow x=3\)(tm)
cho B=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\div\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a. rút gọn B
b. tính \(\sqrt{B}\) khi \(x=5+2\sqrt{3}\)
c. tìm x để B= \(\dfrac{1}{2x^3-x-1}\)
d. tìm giá trị của x để giá trị của B không lớn hơn giá trị biểu thức \(\dfrac{1}{x+2}\)
Lm nhanh giúp mk nhé mk đang cần gấp
a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)
a) Ta có: \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{1}{x-1}\)
Cho biểu thức \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}\)
a, Rút gọn rồi tìm giá trị nhỏ nhất của Q
b, Tìm các số nguyên x để \(\dfrac{3Q}{\sqrt{x}}\) nhận giá trị nguyên
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm