\(a.P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\left(x\ne1;x>0\right)\)
\(b.P=x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow P_{MIN}=\dfrac{3}{4}."="\Leftrightarrow x=\dfrac{1}{4}\)
Để em làm câu c cho 2 chị :3
\(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\)
Để \(Q\in Z\Leftrightarrow\) \(\dfrac{2\sqrt{x}}{x}-2+2\sqrt{x}\in Z\) . Do đó ta cần 2 điều kiện sau :
ĐK1 : \(2\sqrt{x}\) chia hết cho \(x\)
ĐK2 : \(x\) thuộc số chính phương : \(\left(0;1;4;9;.......\right)\)
Xét ĐK1 : Ta có : \(2\sqrt{x}\le x^2\)
Do vậy nên \(2\sqrt{x}\) chia hết cho \(x^2\) khi và chỉ khi \(2\sqrt{x}=x^2\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) ( Thỏa mãn )
Vậy \(x=0\) hoặc \(x=1\) thì \(Q\in Z\)