a) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}=-\dfrac{1}{\sqrt{x}-1}\)
b) \(A=2\Rightarrow\dfrac{-1}{\sqrt{x}-1}=2\Rightarrow-1=2\sqrt{x}-2\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{4}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
a.
\(A=\frac{\sqrt{x}(\sqrt{x}-1)-x}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{2x-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\frac{-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{-\sqrt{x}}{x-\sqrt{x}}=\frac{-\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}=\frac{1}{1-\sqrt{x}}\)
b.
$A=2\Leftrightarrow 1-\sqrt{x}=\frac{1}{2}$
$\Leftrightarrow \sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$ (tm)
A=(\(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\) )\(\div\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) (ĐK \(x\ge0,x\ne1\) )
=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{x-1}\div\left(\dfrac{2x-\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}\right)\)
=\(\dfrac{x-\sqrt{x}-x}{x-1}.\dfrac{x-1}{2x-x-\sqrt{x}}=\dfrac{-\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
=\(\dfrac{-1}{\sqrt{x}-1}\)
câu b
Khi x=2\(\Rightarrow A=\dfrac{-1}{\sqrt{2}-1}=\dfrac{-\left(\sqrt{2}+1\right)}{2-1}=-\left(\sqrt{2}+1\right)\)
a) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-\sqrt{x}-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{2x-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{x-\sqrt{x}}=\dfrac{-1}{\sqrt{x}-1}\)
b) Để A=2 thì \(\sqrt{x}-1=\dfrac{-1}{2}\)
hay \(x=\dfrac{1}{4}\)