a/ \(B=(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-6}{x-9}):(1+\dfrac{6}{x-9})\)
= \((\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-9}{x-9}+\dfrac{6}{x-9})\)
=\((\dfrac{2(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}+\dfrac{\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-3}{x-9})\)
=\((\dfrac{2\sqrt{x}+6+\sqrt{x}-6}{(\sqrt{x}-3)(\sqrt{x}+3)}):(\dfrac{x-3}{x-9})\)
=\((\dfrac{2\sqrt{x}+6+\sqrt{x}-6}{x-9}).(\dfrac{x-9}{x-3})\)
= \(\dfrac{3\sqrt{x}}{x-3}\)
Vậy B=\(\dfrac{3\sqrt{x}}{x-3}\)
b/ Để B≥0 thì \(\dfrac{3\sqrt{x}}{x-3} \)≥0
\(<=>\begin{cases} x-3 không= 0\\ 3\sqrt{x}>/0 \end{cases} \)
<=> \(\begin{cases} x không= 3\\ x>/0 \end{cases} \)
Vậy để B≥0 thì x không = 3 và x≥0
a) Ta có: \(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(1+\dfrac{2}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) Để C<-1 thì C+1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow2\sqrt{x}-1< 0\)
\(\Leftrightarrow x< \dfrac{1}{4}\)
Kết hợp ĐKXĐ, ta được: \(0< x< \dfrac{1}{4}\)