Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hương Giang

Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)\(x\ge0,x\ne1\)

a) Rút gọn biểu thức A.

b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)

c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 23:04

a: Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 23:11

b: Ta có: \(\left(\sqrt{x}+1\right)\cdot A=x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\cdot\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=x\)

\(\Leftrightarrow x-2\sqrt{x}+1=0\)

\(\Leftrightarrow x=1\left(loại\right)\)


Các câu hỏi tương tự
nchdtt
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Phạm Thị Thùy Dương
Xem chi tiết
kieuvancuong
Xem chi tiết
Phương
Xem chi tiết
illumina
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Hải Yến Lê
Xem chi tiết
illumina
Xem chi tiết