Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ahnjui
Xem chi tiết
HaNa
31 tháng 8 2023 lúc 19:41

Theo đề có:

\(\left\{{}\begin{matrix}CD\perp AD\\CD\perp SA\end{matrix}\right.\)

=> \(CD\perp\left(SAD\right)\)

<=> \(d\left(C,\left(SAD\right)\right)=CD=a\)

`HaNa♬`

Blockman Go
Xem chi tiết
Jxnxjxjxjxj
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 7 2021 lúc 23:06

a. Do \(\left\{{}\begin{matrix}SA=\left(SAB\right)\cap\left(SAD\right)\\\left(SAB\right)\perp\left(ABCD\right)\\\left(SAD\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)

b.

\(SA\perp\left(ABCD\right)\Rightarrow AD\)  là hình chiếu vuông góc của SD lên (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa SD và (ABCD) \(\Rightarrow\widehat{SDA}=60^0\)

\(tan\widehat{SDA}=\dfrac{SA}{AD}\Rightarrow SA=AD.tan\widehat{SDA}=2a\sqrt{3}\)

c.

Từ A kẻ \(AH\perp SD\) (1)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AH\) (2)

(1);(2) \(\Rightarrow AH\perp\left(SCD\right)\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)

\(AH=AD.sin\widehat{SDA}=2a.sin60^0=a\sqrt{3}\)

d.

Ta có: \(AI||BC\Rightarrow d\left(I;\left(SBC\right)\right)=d\left(A;\left(SBC\right)\right)\)

Trong tam giác vuông SAB, kẻ \(AK\perp SB\)

Tương tự câu c, dễ dàng chứng minh \(AK\perp\left(SBC\right)\Rightarrow AK=d\left(A;\left(SBC\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{AK^2}=\dfrac{1}{AB^2}+\dfrac{1}{SA^2}=\dfrac{13}{12a^2}\Rightarrow AK=\dfrac{2a\sqrt{39}}{13}\)

Nguyễn Việt Lâm
28 tháng 7 2021 lúc 23:15

undefined

Hoàng Ngọc nhi
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 15:41

Bạn coi lại đề, sao lại có 2 cái AF là đường cao của 2 tam giác khác nhau thế kia?

Thư Hình
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 22:47

a: BC vuông góc SA
BC vuông góc AB

=>CB vuông góc (SBA)

DC vuông góc AD

DC vuông góc SA

=>DC vuông góc (SAD)

=>(SDC) vuông góc (SAD)

b: (SC;(SAD))=(SC;SD)=góc CSD

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{7}\)

\(AC=\sqrt{\left(2a\right)^2+3a^2}=a\sqrt{7}\)

\(SC=\sqrt{SA^2+AC^2}=4a\sqrt{2}\)

\(cosCSD=\dfrac{SC^2+SD^2-DC^2}{2\cdot SC\cdot SD}=\dfrac{32a^2+28a^2-4a^2}{2\cdot2a\sqrt{7}\cdot4a\sqrt{2}}=\dfrac{\sqrt{14}}{4}\)

=>góc CSD=21 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=5/căn 7

=>góc SCA=62 độ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2018 lúc 6:00

Chọn D.

Ta có AB//CD

⇒ S B ; C D ^ = S B ; A B ^ = S B A ^ = 45 o d o   ∆ S B A   c â n

Thu Vũ Thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 9:34

1: CD vuông góc AD
CD vuông góc SA

=>CD vuông góc (SAD)

=>(SCD) vuông góc (SAD)

 

Lê vsbzhsjskskskssm
Xem chi tiết
Akai Haruma
8 tháng 6 2021 lúc 22:18

Bạn chỉ nên đăng 1 bài 1 lần thôi, tránh làm loãng box toán!

Lê vsbzhsjskskskssm
Xem chi tiết
Akai Haruma
8 tháng 6 2021 lúc 22:16

Lời giải:
Vì $SA\perp (ABCD)$ nên 

$60^0= \angle (SC, (ABCD))=\angle (SC, AC)=\widehat{SCA}$

Ta có:

$AC=\sqrt{a^2+(2a)^2}=\sqrt{5}a$

$\frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{15}a$
$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}$

$=\frac{1}{3}.\sqrt{15}a.a.2a=\frac{2\sqrt{15}}{3}a^3$

Tô Hồng
Xem chi tiết