Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Chi Phạm
Xem chi tiết
HT.Phong (9A5)
11 tháng 10 2023 lúc 18:25

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 15:42

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:07

Câu 1 đề vẫn có vấn đề:

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)

\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)

\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)

Có thể coi như ko thể rút gọn tiếp

2.

\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)

\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)

\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)

\(=2\left(cos^2x+sin^2x\right)+2=4\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 16:29

\(=\sqrt{4x-1-2\sqrt{4x-1}+1}+\sqrt{4x-1+2\sqrt{4x-1}+1}\)

\(=\sqrt{\left(\sqrt{4x-1}-1\right)^2}+\sqrt{\left(\sqrt{4x-1}+1\right)^2}\)

\(=\left|\sqrt{4x-1}-1\right|+\sqrt{4x-1}+1\)

\(=\left[{}\begin{matrix}2\sqrt{4x-1}\text{ nếu }x\ge\dfrac{1}{2}\\2\text{ nếu }\dfrac{1}{4}\le x< \dfrac{1}{2}\end{matrix}\right.\)

KYAN Gaming
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:09

\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(A=1-\dfrac{2\left(2\sqrt{x}-1\right)-5\sqrt{x}+\left(2\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}+1\right)^2}\)

\(A=1-\dfrac{4\sqrt{x}-2-5\sqrt{x}+2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(A=1-\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(A=1-\dfrac{2\sqrt{x}+1}{2\sqrt{x}-1}=\dfrac{2\sqrt{x}-1-2\sqrt{x}-1}{2\sqrt{x}-1}=\dfrac{-2}{2\sqrt{x}-1}\)

Tick hộ nha

 

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 22:52

\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)

\(=\pm3\sqrt{2}x^2\)

\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)

\(=\pm\left|a\right|\)

Trần Hoàng Anh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Chử Bảo Nhi
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 16:24

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

Akai Haruma
22 tháng 6 2023 lúc 16:25

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

bỌt BiỂn
Xem chi tiết