Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Kim Nguyên
Xem chi tiết
Duc Maithien
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 5 2020 lúc 15:17

\(A=\frac{2sin2x-2sin2x.cos2x}{2sin2x+2sin2x.cos2x}=\frac{1-cos2x}{1+cos2x}=\frac{2sin^2x}{2cos^2x}=tan^2x\)

\(B=\frac{2cos4x.sinx}{2cos4x}=sinx\)

Câu C ko dịch được đề

Nguyễn Việt Lâm
21 tháng 8 2020 lúc 21:45

\(\Leftrightarrow sin4x\left(sin5x+sin3x\right)-sin2x.sinx=0\)

\(\Leftrightarrow2sin^24x.cosx-2sin^2x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin^24x-2sin^2x\right)=0\)

\(\Leftrightarrow cosx\left(1-cos8x-1+cos2x\right)=0\)

\(\Leftrightarrow cosx\left(cos2x-cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=2x+k2\pi\\8x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{k\pi}{3}\\x=\frac{k\pi}{5}\end{matrix}\right.\)

Minh Khá
Xem chi tiết
Minh Khá
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:19

\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)

b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)

c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)

d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)

\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)

e/

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 7 2020 lúc 17:40

a/

\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
10 tháng 7 2020 lúc 17:44

c/

\(\Leftrightarrow4sin3x+2sin3x.sin2x=0\)

\(\Leftrightarrow sin3x\left(2+sin2x\right)=0\)

\(\Leftrightarrow sin3x=0\) ( do \(2+sin2x>0;\forall x\))

\(\Leftrightarrow3x=k\pi\)

\(\Rightarrow x=\frac{k\pi}{3}\)

d/

\(2cos^2\left(x-\frac{\pi}{4}\right)+sin2x=0\)

\(\Leftrightarrow1+cos\left(2x-\frac{\pi}{2}\right)+sin2x=0\)

\(\Leftrightarrow1+sin2x+sin2x=0\)

\(\Leftrightarrow sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
10 tháng 7 2020 lúc 17:50

e/

\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sinx=\pi+k2\pi\)

\(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)

\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn

Pt đã cho vô nghiệm

f/

\(cos^2x-sin^2x+sin4x=0\)

\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

nguyễn hoàng lê thi
Xem chi tiết
Mushroom
14 tháng 6 2020 lúc 23:13

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:22

a/

\(\sqrt{3}sin4x-cos4x=2cosx\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x=cosx\)

\(\Leftrightarrow sin\left(4x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{6}=\frac{\pi}{2}-x+k2\pi\\4x-\frac{\pi}{6}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:28

b/

\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:30

c/

\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)

\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

van hoan Dao
Xem chi tiết