Tìm x biết: \(x^2-4x+5=0\)
Tìm x,biết a)x^2-4x-5=0
\(a,x^2-4x-5=0\)
\(\Rightarrow x^2-5x+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{5;-1\right\}\)
$x^2 - 4x - 5 = x^2 + x - 5x - 5 = x(x+1) - 5(x+1) = (x-5)(x+1)$
Suy ra $x^2 - 4x - 5 = 0 \Leftrightarrow (x-5)(x+1) = 0$
$\Leftrightarrow x = -1$ hoặc $x = 5$.
Tìm x biết
a) x^3+4x=0
b) (5-x).2=4x-3
a) \(x^3+4x=0\)
\(\Rightarrow x\left(x^2+4\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2+4=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2=-4\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x\in\phi\end{array}\right.\)
Vậy: \(x=0\)
b) \(2\left(5-x\right)=4x-3\)
\(\Rightarrow10-2x=4x-3\)
\(\Rightarrow10+3=4x+2x\)
\(\Rightarrow13=6x\)
\(\Rightarrow x=\frac{13}{6}\)
x3+ 4x=0
<=> x(x2+4)=0
=> x=0 hoặc x2+4=0
Mà: x2+4 >4
=>x=0
b) (5-x).2=4x-3
<=>10-2x=4x-3
<=>10+3= 2x+4x
<=>13=6x
=>x=\(\frac{13}{6}\)
Tìm x biết
(6-3x)^2-2(3x-6)=0(2x+5)^3-(2x+5)=0(6-4x)^3-(6-4x)=0(5-4x)^2-(4x+5)=0Tìm x biết
a) 25x^2 -1-(5x-1)(x+2) = 0
b) (2x-3)-(3-2x)(x-1) = 0
c) 9 -4x^2-(6+4x)(x-5) = 0
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) 25x2 - 1 - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 ) - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 - x - 2) = 0
<=> ( 5x - 1 )( 4x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{4}\end{cases}}}\)
Vậy .......
tìm x biết:
a)x^2-9-2(x-3)=0
b)x(x-5)-4x+20=0
c)2x^2+3x-5=0
Trả lời:
a, \(x^2-9-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy x = 3; x = - 1 là nghiệm của pt.
b, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
c, \(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}}\)
Vậy x = - 5/2; x = 1 là nghiệm của pt.
TL
a) pt tương đương:
x2−81−x2+6x−9
=0⇔6x
=90⇔x=15
b)
x=4,
x=5
c)
x=-5/2,
x=1
HT
Tìm x biết:
(4x-2)(x+5)=0
\(\left(4x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-5\end{cases}}}\)
\(\left(4x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-2=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-5;\frac{1}{2}\right\}\)
Tìm x biết: a) (x-3)^{2}-(x+2)(x-2)=-5 b) x^{3}-2x^{2}-4x+8=0
a) $(x-3)^2-(x+2)(x-2)=-5$
$\Rightarrow x^2-2\cdot x\cdot3+3^2-(x^2-2^2)=-5$
$\Rightarrow x^2-6x+9-(x^2-4)=-5$
$\Rightarrow x^2-6x+9-x^2+4=-5$
$\Rightarrow-6x+13=-5$
$\Rightarrow-6x=-18$
$\Rightarrow x=3$
b) $x^3-2x^2-4x+8=0$
$\Rightarrow(x^3-2x^2)-(4x-8)=0$
$\Rightarrow x^2(x-2)-4(x-2)=0$
$\Rightarrow (x^2-4)(x-2)=0$
$\Rightarrow (x^2-2^2)(x-2)=0$
$\Rightarrow (x-2)(x+2)(x-2)=0$
$\Rightarrow (x-2)^2(x+2)=0$
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
$\text{#}Toru$
tìm x,y biết x^2+y^2-4x-2y+5=0
\(x^2+y^2-4x-2y+5=0\)
\(x^2-4x+4+y^2-2y+1=0\)
\(\left(x-2\right)^2+\left(y-1\right)^2=0\)
\(Khi\) \(x-2=0\)và \(y-1=0\)
\(x=2;y=1\)
Vậy \(x=2;y=1\)
Tìm x biết:
a. x3 – 25x = 0 b. 3x(x- 2) – x + 2 = 0
c. x2 – 4x - 5 = 0 d.x3 – x2 + 3x – 3 = 0
e. x3 + 27 + ( x + 3)( x – 9) = 0
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
tìm x biết
1, x mũ 3 + 4x mũ 2 + 4x = 0
2, ( x + 3 ) mũ 2 - 4 = 0
3, x mũ 4 - 9x mũ 2 = 0
4, x mũ 2 - 6x + 9 = 81
5, x mũ 3 + 6x mũ 2 + 9x - 4x = 0
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
a)\(x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\left(x+3\right)^2-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3-2=0\\x+3+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)
c)\(x^4-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
d)\(x^2-6x+9=81\)
\(\Leftrightarrow\left(x-3\right)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}}\)
e)\(x^3+6x^2+9x-4x=0\)
\(\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;x=-5\\x=-1\end{cases}}}\)
#H