Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đan Xuân Nghi
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 11:38

a: ĐKXĐ: x=0; x<>1

\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)

\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)

b: Sửa đề: P=1/M

P=1/4-x=-1/x-4

Để P nguyên thì x-4 thuộc {1;-1}

=>x thuộc {5;3}

Bảo Huy
Xem chi tiết
ILoveMath
16 tháng 12 2021 lúc 21:27

\(\sqrt{1-x}\)

ĐKXĐ:\(1-x\ge0\Rightarrow x\le1\)

\(\sqrt{x-1}\)

ĐKXĐ:\(x-1\ge0\Rightarrow x\ge1\)

Đào Phương Linh
16 tháng 12 2021 lúc 21:30

\(\sqrt{1-x}xđ< =>1-x>0< =>-x>-1< =>x< 1\)
\(\sqrt{x-1}xđ< =>x-1>0< =>x>1\)

nam anh đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 13:03

ĐKXĐ: x-1>=0 và x+3căn x-1>0

=>x>=1 

Emily Nain
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 20:44

ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:44

Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)

Nguyễn Ngọc Linh
5 tháng 7 2021 lúc 20:48

Biểu thức trên có nghĩa khi \(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le1\end{matrix}\right.\)

Nguyễn thị Ngọc Ánh
Xem chi tiết
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:21

a ) \(ĐKXĐ:x\ge0;x\ne1\)

\(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
30 tháng 12 2019 lúc 15:35

B ) Ta có :

 \(Q=P-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)

Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)

\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)

Ta có bảng sau :

\(\sqrt{x}-1\)3-31-1
\(\sqrt{x}\)4-220
\(x\)16(t/m) 4(t/m)0(t/m)

Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)


 

Khách vãng lai đã xóa
Lê Quỳnh Chi Phạm
Xem chi tiết
HT.Phong (9A5)
11 tháng 10 2023 lúc 18:25

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

helpmeplsss
Xem chi tiết
Minh Hiếu
15 tháng 9 2023 lúc 21:00

a) \(x\ge0\)

b) \(x\le0\)

c) \(x\le4\)

d) \(\sqrt{x^2+1}>0\forall x\) => \(x\in R\)

乇尺尺のレ
15 tháng 9 2023 lúc 21:01

a)đẻ \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì

\(\dfrac{x}{3}\ge0\\ \Leftrightarrow x\ge0\)

b) để \(\sqrt{-5x}\) có nghĩa thì 

\(-5x\ge0\\ \Leftrightarrow x\le0\)

c) để \(\sqrt{4-x}\) có nghĩa thì 

\(4-x\ge0\\ \Leftrightarrow x\le4\)

d) để \(\sqrt{1+x^2}\) có nghĩa thì

\(1+x^2\ge0\forall x\in R\)

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 20:32

1: ĐKXĐ: 3x^2-x+2>=0

=>x thuộc R

2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0

=>x>0 và x<>1 và x<>4

mynameisbro
Xem chi tiết
乇尺尺のレ
11 tháng 9 2023 lúc 21:07

\(\dfrac{x-2\sqrt{x+5}}{\sqrt{2x^2+1}}\) có nghĩa khi

\(\left\{{}\begin{matrix}x+5\ge0\\2x^2+1>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\2x^2+1>0\forall x\in R\end{matrix}\right.\\ \Rightarrow x\ge-5\)

trần vũ hoàng phúc
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:36

Lời giải:

a. Để bt có nghĩa thì $x^2-x+1\geq 0$

$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$ 

$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)

b.

Để bt có nghĩa thì $x^2-5\geq 0$

$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

c. 

Để bt có nghĩa thì: $-x^2+2x-1\geq 0$

$\Leftrightarrow -(x^2-2x+1)\geq 0$

$\Leftrightarrow x^2-2x+1\leq 0$

$\Leftrightarrow (x-1)^2\leq 0(*)$

Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$

Nên $(*)\Leftrightarrow (x-1)^2=0$

$\Leftrightarrow x=1$

d.

Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)