So sánh
A=\(\dfrac{25^{10}+1}{25^{10}-1}\) B=\(\dfrac{25^{10}-1}{25^{10}-3}\)
so sánh M=\(\dfrac{10^{25}+1}{10^{26}+1}\)và N=\(\dfrac{10^{26}+1}{10^{27}+1}\)
`M=(10^25+1)/(10^26+1)`
`=>10M=(10^26+10)/(10^26+1)=1+9/(10^26+1)``
`CMTT:10N=1+9/(10^27+1)`
Vì `1/(10^26+1)>1/(10^27+1)`
`=>9/(10^26+1)>9/(10^27+1)`
`=>1+9/(10^26+1)>1+9/(10^27+1)`
`=>10M>10N=>M>N`
2/ So sánh các phân số sau :
a/ \(\dfrac{7}{10}\) và \(\dfrac{11}{15}\) ; b/ \(\dfrac{-1}{8}\) và \(\dfrac{-5}{24}\) ; c/ \(\dfrac{25}{100}\) và \(\dfrac{10}{40}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
\(\dfrac{1}{25}+\dfrac{2}{25}+\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{6}{25}+\dfrac{7}{25}+\dfrac{8}{25}+\dfrac{9}{25}+\dfrac{10}{25}\)
Bài 1 : Thực hiện phép tính
a/ \(\dfrac{7}{6}\) - \(\dfrac{13}{12}\) + \(\dfrac{3}{4}\)
b/ 1 \(\dfrac{1}{2}\) . \(\dfrac{-4}{5}\) + \(\dfrac{3}{10}\)
c/ \(\dfrac{25}{9}\) . \(\dfrac{3}{10}\) + ( \(\dfrac{-5}{3}\) )\(^2\) . \(\dfrac{7}{10}\) + | \(\dfrac{-25}{3}\) |
Bài 2 : Tìm x , biết
a/ x - \(\dfrac{5}{6}\) = \(\dfrac{1}{4}\)
b/ \(\dfrac{26}{x}\) = \(\dfrac{-13}{-15}\)
( Cần gấp )
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
c/ \(\dfrac{25}{9}\) . \(\dfrac{3}{10}\) + ( \(\dfrac{-5}{3}\) )\(^2\) . \(\dfrac{7}{10}\) + | \(\dfrac{-25}{3}\) |
\(=\dfrac{25}{9}.\dfrac{3}{10}+\dfrac{25}{9}.\dfrac{7}{10}+\dfrac{25}{3}=\dfrac{25}{9}\left(\dfrac{3}{10}+\dfrac{7}{10}\right)+\dfrac{25}{3}=\dfrac{25}{9}+\dfrac{25}{3}=\dfrac{100}{9}\)
so sánh
\(A=\dfrac{25^{16}+1}{25^{17}+!}\) và \(B=\dfrac{25^{15}+1}{25^{16}+1}\)
So sánh a và b biết :
a = ( 25^10 + 10^10 ) ^25
b = ( 25^25 + 10^25 ) ^ 10
Xét a, ta có:
2510 = (252)5 = 6255
1010 = (102)5 = 1005
=> (2510 + 1010)25 = (6255 + 1005)25
Xét b, ta có:
2525 = (255)5
1025 = (105)5
=> (2525 + 1025)10 = [(255)5 + (105)5]10
Mình bí mất rồi!
1, A= \(\dfrac{-3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
2, B= \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):\dfrac{7}{3}\)
3, C= \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
4, D= \(6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
\(D=6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(D=\dfrac{77}{12}:\dfrac{13}{4}+\dfrac{45}{4}.\dfrac{2}{15}\)
\(D=\dfrac{77}{39}+\dfrac{3}{2}\)
\(D=\dfrac{271}{78}\)
\(C=\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\left(\dfrac{9}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\dfrac{33}{20}.\dfrac{10}{11}\)
\(C=\dfrac{5}{2}-\dfrac{3}{2}\)
\(C=1\)
a) \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
b) \(\dfrac{x-3}{x-1}-\dfrac{2x+1}{x+1}=\dfrac{x-x^2}{x^2-1}\)
a, \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
\(\Leftrightarrow\dfrac{2\left(5-x\right)}{2}=\dfrac{5\left(5-x\right)}{5}\)
\(\Leftrightarrow5-x=5-x\)
\(\Leftrightarrow0x=0\)
⇒ Có vô số giá trị của x thỏa mãn.
Vậy...
b, ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x-3}{x-1}-\dfrac{2x+1}{x+1}=\dfrac{x-x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+1\right)-\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow x^2-2x-3-2x^2+x+1=x-x^2\)
\(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=-1\left(ktm\right)\)
Vậy...
a) Ta có: \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
\(\Leftrightarrow5\left(10-2x\right)=2\left(25-5x\right)\)
\(\Leftrightarrow50-10x=50-10x\)
\(\Leftrightarrow0x=0\)(phương trình có vô số nghiệm)
Vậy: S={x|\(x\in R\)}