Tính M=\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
Tính M = \(\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{2^8}=\sqrt{16^2}=16\)
thực hiện phép tính \(\dfrac{10}{11}\)+\(\dfrac{4}{11}\):4 - \(\dfrac{1}{8}\)
\(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8}{8}-\dfrac{1}{8}=\dfrac{7}{8}\)
=\(=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=\dfrac{11}{11}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8}{8}-\dfrac{1}{8}=\dfrac{7}{8}\)
Tính M = \(\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(M=\sqrt{2^8}=16\)
Tính rồi rút gọn (theo mẫu):
Mẫu: \(\dfrac{9}{10}-\dfrac{4}{10}=\dfrac{9-4}{10}=\dfrac{5}{10}=\dfrac{1}{2}\) |
a) \(\dfrac{15}{8}-\dfrac{13}{8}\) b) \(\dfrac{7}{15}-\dfrac{2}{15}\) c) \(\dfrac{11}{12}-\dfrac{2}{12}\) d) \(\dfrac{19}{7}-\dfrac{5}{7}\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
tính
M =\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(A=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8\)
Vậy...
Tính:
\(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(M=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(M=\dfrac{4^{15}+4^{10}}{4^6+4^{11}}\)
\(M=\dfrac{4^{10}\left(4^5+1\right)}{4^6\left(4^5+1\right)}\)
\(M=\dfrac{4^{10}}{4^6}\)
\(M=4^4=256\)
Tính
M = \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
N = \(\dfrac{15^{30}}{45^{15}}\)
M=256
N=15^15/3^15
Thông cảm vì mình ko giải ra chi tiết vì nó lâuuuu
N = \(\dfrac{3^{30}.5^{30}}{3^{30}.5^{15}}=\dfrac{5^{30}}{5^{15}}=5^{15}\)
\(M=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8=256\\ N=\dfrac{\left(3\cdot5\right)^{30}}{\left(3^2\cdot5\right)^{15}}=\dfrac{3^{30}\cdot5^{30}}{3^{30}\cdot5^{15}}=5^{15}=...\)
Câu 1 :
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\) ?
Các anh chị chỉ cho em cách tính với ạ !! Trình bày cụ thể hộ em với
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8=256\)
chỉ cách tính hay là có cần tính kết quả luôn k bn
tính M = 8^10 +4^10/ 8^4 +4 ^11
Mình ns kết quả nha
Bằng 256
Ủng hộ mk nhaaa