Bài 1: cho a,b,c >0 cm nếu a+ b+c=\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a=b=c
a, b, c > 0; a + b + c = 1. CM: \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Ta chứng minh
\(\sqrt{a+bc}\ge1a+\sqrt{bc}\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)
\(\Leftrightarrow a\left(1-a-2\sqrt{bc}\right)\ge0\)
\(\Leftrightarrow a\left(b+c-2\sqrt{bc}\right)\ge0\)
\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(đúng)
Từ đây ta suy ra được
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Một cách chứng minh rất sáng tạo ko lệ thuộc vào cách truyền thống. Cho bn 1 k
Cách khác: Áp dụng BĐT Huygens ta có:
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\ge a+\sqrt{bc}\). Thiết lập 2 BĐT tương tự là:
\(\sqrt{b+ca}\ge b+\sqrt{ac};\sqrt{c+ab}\ge c+\sqrt{ab}\)
Cộng theo vế 3 BĐT trên có:
\(VT\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a+b+c=VP\) (vì a+b+c=1)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
a, b, c > 0; a + b + c = 1. CM: \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Áp dụng BĐT Bunhiakovsky:
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\ge\sqrt{\left(\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\right)^2}=a+\sqrt{bc}\) (1)
Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\) (2)
và: \(\sqrt{c+ab}\ge c+\sqrt{ab}\) (3)
Cộng (1), (2) và (3), kết hợp với a+b+c=1 ta có đpcm.
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow\) \(a=b=c=\frac{1}{3}\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Hmm giúp xem nào .-.
Cho `a,b,c>0,a^2+b^2+c^2=3`
`CM:1/(4-sqrt{ab})+1/(4-\sqrt{bc})+1/(4-\sqrt{ca})<=1`
Có \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}=\dfrac{2}{8-\sqrt{2\left(a^2+b^2\right)}}\)
Tương tự: \(\dfrac{1}{4-\sqrt{bc}}\le\dfrac{2}{8-\sqrt{2\left(b^2+c^2\right)}}\), \(\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2\left(a^2+c^2\right)}}\)
Đặt \(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)=\left(x;y;z\right)\)
Khi đó \(\left\{{}\begin{matrix}x+y+z=6\\z,y,z>0\end{matrix}\right.\) (1)
Đặt VT của bđt là A
Có \(A=\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2x}}+\dfrac{2}{8-\sqrt{2y}}+\dfrac{2}{8-\sqrt{2z}}\)
Ta cm bđt phụ: \(\dfrac{2}{8-\sqrt{2x}}\le\dfrac{1}{36}\left(x-2\right)+\dfrac{1}{3}\)
Thật vậy bđt trên tương đương \(\dfrac{6}{3\left(8-\sqrt{2x}\right)}-\dfrac{8-\sqrt{2x}}{3\left(8-\sqrt{2x}\right)}-\dfrac{1}{36}\left(x-2\right)\le0\)
\(\Leftrightarrow\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{3\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{36}\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)\left[\dfrac{\sqrt{2}.12}{36\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}+\sqrt{2}\right)\left(8-\sqrt{2x}\right)}{36\left(8-\sqrt{2x}\right)}\right]\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2.\dfrac{\left(\sqrt{x}-2\sqrt{2}\right)}{36\left(8-\sqrt{2x}\right)}\le0\) (*)
Từ (1) ta có \(x\in\left(0;6\right)\) nên bđt phụ trên luôn đúng
Tương tự ta cũng có \(\dfrac{2}{8-\sqrt{2y}}\le\dfrac{1}{36}\left(y-2\right)+\dfrac{1}{3}\) , \(\dfrac{2}{8-\sqrt{2z}}\le\dfrac{1}{36}\left(z-2\right)+\dfrac{1}{3}\)
Từ đó => \(A\le\dfrac{1}{36}\left(x+y+z-6\right)+1=\dfrac{1}{36}\left(6-6\right)+1=1\) (đpcm)
Dấu = xảy ra <=> x=y=z=2 <=> a=b=c=1
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)
cho a,b,c >0 và a+b+c=2 CM: \(\frac{ab}{\sqrt{2c+ab}}+\frac{bc}{\sqrt{2a+bc}}+\frac{ca}{\sqrt{2b+ca}}\le1\)
\(\sum\frac{ab}{\sqrt{c\left(a+b+c\right)+ab}}=\sum\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\left(a+b+c\right)=1\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
cho a,b,c >0
cm\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
\(\sqrt{\left(a+c\right)\left(b+d\right)}>\sqrt{ab}+\sqrt{cd}\)
cho a,b,c \(\ge\)0 thỏa a+b+c=1.CMR
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)
Thật vậy, ta có:
\(a+bc\ge a^2+2a\sqrt{bc}+bc\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)
\(\Leftrightarrow1\ge a+2\sqrt{bc}\)
\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)
Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)