Cho x + y = 4. Giá trị nhỏ nhất của biểu thức \(A=x^4+y^4\).
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
Cho x và y là hai số thực không âm thỏa mãn x + y = 4 . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \(x^4+y^4-4xy+3\)
\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)
\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)
\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)
Đặt \(xy=a\Rightarrow0\le a\le4\)
\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)
\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)
\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)
\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
cho biểu thức A\(=X^4-6X^3+18x^2-6xy+y^2+2012\)
tìm x,y để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$
Cho x+y=1. Tìm giá trị nhỏ nhất của biểu thức P= x4+y4
\(\text{Xét:}x^4+y^4-2x^2y^2=\left(x^2-y^2\right)^2\ge0\)
\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2\)
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow\left(x^2+y^2\right)\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow\left(x^2+y^2\right)^2\ge\frac{1}{4}\Rightarrow x^4+y^4\ge\frac{1}{8}\)
=> giá trị nhỏ nhất của P là 1/8 dấu "=" xảy ra khi: x=y=1/2
C-s:\(P=\left(x^2\right)^2+\left(y^2\right)^2\ge\left(x^2+y^2\right)^2\ge\left(\left(x+y\right)^2\right)^2=1\)
Xảy ra khi x=y=1/2
\(P=x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\left(x+y\right)^2\right]^2}{8}=\frac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\).
Cho biểu thức A=3x²+4xy+5y²+6x+7y+4
Tìm giá trị nhỏ nhất của A. Với giá trị nào của x,y thì A đạt giá trị nhỏ nhất .
a) Tìm giá trị nhỏ nhất của biểu thức:
A=|x+10|+|y-10|+2012 (x,y thuộc Z)
b)Tìm giá trị lớn nhất của biểu thức:
B=-|x-90|-|y-4|+2012 (x,y thuộc Z)
Cho ba số sương x,y,z thoả mãn: xy + yz +xz = 12
Tìm giá trị nhỏ nhất của biểu thức:
\(M=x^4+y^4+z^4\)