CMR: Tu \(\dfrac{a}{b}=\dfrac{c}{d}+1\)
ta co the suy ra :\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
cmr :tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(voi b,d khac 0) ta suy ra duoc \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
AD t/c DTS = nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}\left(dpcm\right)\)
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}+1=\dfrac{c}{d}+1=>\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{b}-1=\dfrac{c}{d}-1=>\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=cb=>ad+ac=cb+ac\)
\(=>a\left(c+d\right)=c\left(a+b\right)=>\dfrac{a}{c}=\dfrac{a+b}{c+d}=>\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
hay \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) ta suy ra được các tỉ lệ thức sau:
a) \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\) (các mẫu số phải khác 0)
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
CMR từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b \(\ne\) 0, c - d \(\ne\) 0) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giải:
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
Vậy...
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)
Thay (1) vào:
\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)
\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)
Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng tính chất hoán vị ta được:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
7: từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) (a,b,c,d ≠ 0) ta suy ra:
A) \(\dfrac{a}{c}\)=\(\dfrac{d}{b}\) B)\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) C)\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\) D) \(\dfrac{d}{a}\)=\(\dfrac{b}{c}\)
CMR: từ \(\dfrac{a}{b}=\dfrac{c}{d}\)suy ra được \(\dfrac{a^n+b^n}{c^n+d^n}=\dfrac{a^n-b^n}{c^n-d^n}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a^n}{c^n}=\dfrac{b^n}{d^n}=\dfrac{a^n+b^n}{c^n+d^n}=\dfrac{a^n-b^n}{c^n-d^n}\Rightarrowđpcm\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) với a,b,c,d đều khác 0.
Đẳng thức nào dưới đây được suy ra từ giả thiết trên?
\(\dfrac{a}{d}=\dfrac{b}{c}\)
\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\dfrac{d}{b}=\dfrac{c}{a}\)
\(\dfrac{a}{c}=\dfrac{d}{b}\)
Chọn đẳng thức \(\dfrac{d}{b}=\dfrac{c}{a}\) nhé bạn
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{d}{b}=\dfrac{c}{a}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)với a,b,c,d đều khác 0.
Đẳng thức nào dưới đây được suy ra từ giả thiết trên?
\(\dfrac{a}{d}=\dfrac{b}{c}\)
\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\dfrac{d}{b}=\dfrac{c}{a}\)
\(\dfrac{a}{c}=\dfrac{d}{b}\)
sorry đăng nhầm,cái này mk hỏi có bn trả lời rồi
CMR: từ\(\dfrac{a}{b}=\dfrac{c}{d}\)suy ra được \(\dfrac{a^n+b^n}{c^n+d^n}=\dfrac{a^n-b^n}{c^n-d^n}\)