Cho x, y thỏa \(x^2+y^2=8\). CMR x + y =< 4
Cho x, y thỏa \(x^2+y^2=8\). CMR x + y = 4
Áp dụng BĐT Bunhiacopxki , ta có :
⇒ \(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)
⇒ \(x+y\le\sqrt{16}\)
⇔ x + y ≤ 4
Đẳng thức xảy ra khi : x = y = 2
Ta có\(x^2+y^2=8\) . Ta có \(x^2\)< hoặc = 8
Mà \(x^2\)là số chính phương nên \(x^2\) = 0 ,1,4 => x=0,1,2,-2
Xét x=0 => \(y^2\)=8( loại)
Xét x=1 => \(y^2\)=7( loại)
Xét x=2 => \(y^2\)=4 => y=-2,2 ( chọn)
Xét x=-2 => \(y^2\)=4=> y=-2,2 ( chọn)
Ta lại có 2 TH : x+y =-2+2=0 <4, x+y=2+2=4
Vậy \(x^2+y^2=8\) thì x+y < hoặc = 4
cho x;y là các số thwucj dương phân biệt thỏa mãn ;
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
cho x,y là các số thực dương phân biệt thỏa mãn
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
cho 3 số thỏa mãn x/1998=y/1999=z/2000.
a)CMR: (x-z)3=8(x-y)2(y-z)
b)CMR: nếu 2(x+y)=5(y+z)=3(z+x) thì x-y/4=y-z/5
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)
Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)
a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)
\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)
b) Từ (1) => x + z = 2y
Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)
Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)
=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM
Bạn đinh thùy linh trả lời rõ ràng hơn được ko
Đinh Thùy Linh trả lời sai
cho 3 số thực x,y,z thỏa mãn: xyz=2\(\sqrt{2}\)
CMR : \(\frac{x^8+y^8}{x^4+y^4+x^2y^2}\)+\(\frac{y^8+z^8}{y^4+z^4+y^2z^2}\)+\(\frac{z^8+x^8}{z^4+x^4+z^2x^2}\)≥8
Cho hai số x;y thỏa mãn: x + y = . CMR: x^2 + y^2 \(\le\) x^4 + y^4
Chắc là x + y = 2.
Ta có \(x^4-x^2-2x+2=\left(x-1\right)\left(x^3+x^2-2\right)=\left(x-1\right)^2\left(x^2+2x+2\right)\ge0\).
Do đó \(x^4\ge x^2+2x-2\). Tương tự \(y^4\ge y^2+2y-2\).
Cộng vế với vế của 2 bđt trên ta có đpcm.
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
Cho hai số x,y thỏa mãn x+y=2. CMR x^2+y^2 bé hơn hoặc bằng x^4+y^4.
Tham khảo:
https://hoc24.vn/cau-hoi/cho-hai-so-xy-thoa-man-x-y-cmr-x2-y2-le-x4-y4.628714996213