Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 21:54

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{3y}{3b}=\dfrac{2z}{2c}=\dfrac{x-3y+2z}{a-3b+2c}=4\)

Lê Thanh Sơn
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
19 tháng 11 2023 lúc 16:43

`#3107.101107`

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Ta có:

\(\dfrac{3b}{a}=\dfrac{3d}{c}\Rightarrow3bc=3da\Rightarrow bc=da\)

Vậy, từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ta có thể suy ra tỉ lệ thức \(\dfrac{3b}{a}=\dfrac{3d}{c}\)

\(\Rightarrow B.\)

Nguyễn Anh Thư
Xem chi tiết
 Mashiro Shiina
23 tháng 12 2017 lúc 12:59

\(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)

\(P=\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)\(\)

ỵyjfdfj
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 19:39

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

Nguyễn Huyền Trâm
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
20 tháng 6 2019 lúc 8:11

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)

b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 12 2021 lúc 7:08

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 20:03

Đặt a/2=b/3=c/4=k

=>a=2k; b=3k; c=4k

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

=>a=8; b=12; c=16

Trường hợp 2: k=-4

=>a=-8; b=-12; c=-16

Sơn Mai Thanh Hoàng
16 tháng 3 2022 lúc 20:11

REFER

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm\\c=\pm16\end{matrix}\right.12}\)

Vậy (a; b; c)\(\in\){(8; 12; 16)}; {(-8; -12; -16)}

Hồ Nhật Phi
16 tháng 3 2022 lúc 20:13

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\left\{{}\begin{matrix}b=\dfrac{3}{2}a\\c=2a\end{matrix}\right.\).

Ta có: \(a^2+3b^2-2c^2=a^2+3.\left(\dfrac{3}{2}a\right)^2-2.\left(2a\right)^2=-\dfrac{1}{4}a^2=-16\) \(\Rightarrow\) a=\(\pm\)\(\Rightarrow\) b=\(\pm\)12, c=\(\pm\)16.

Xem chi tiết

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)