Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ỵyjfdfj

Cho a, b, c là ba số dương thỏa mãn: \(\dfrac{\text{2b+c-a}}{a}=\dfrac{\text{2c-b+a}}{b}=\dfrac{\text{ 2a+b-c}}{c}\) 

Tính giá trị biểu thức: P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3a-2c\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)} \)

Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 19:39

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)


Các câu hỏi tương tự
Mai Phương Nguyễn
Xem chi tiết
Vu Phuong Thao
Xem chi tiết
Đặng Anh Thư
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Hà Phương Trần Thị
Xem chi tiết
Cristiano Ronaldo
Xem chi tiết
Wayne Rooney
Xem chi tiết