Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Tìm a,b,c biết \(a^2+3b^2-2c^2=-16,\) và \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 20:03

Đặt a/2=b/3=c/4=k

=>a=2k; b=3k; c=4k

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

=>a=8; b=12; c=16

Trường hợp 2: k=-4

=>a=-8; b=-12; c=-16

Sơn Mai Thanh Hoàng
16 tháng 3 2022 lúc 20:11

REFER

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm\\c=\pm16\end{matrix}\right.12}\)

Vậy (a; b; c)\(\in\){(8; 12; 16)}; {(-8; -12; -16)}

Hồ Nhật Phi
16 tháng 3 2022 lúc 20:13

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\left\{{}\begin{matrix}b=\dfrac{3}{2}a\\c=2a\end{matrix}\right.\).

Ta có: \(a^2+3b^2-2c^2=a^2+3.\left(\dfrac{3}{2}a\right)^2-2.\left(2a\right)^2=-\dfrac{1}{4}a^2=-16\) \(\Rightarrow\) a=\(\pm\)\(\Rightarrow\) b=\(\pm\)12, c=\(\pm\)16.

Sơn Mai Thanh Hoàng
16 tháng 3 2022 lúc 20:14

làm lại cái lỗi:

\(\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)

Sơn Mai Thanh Hoàng
16 tháng 3 2022 lúc 20:15

hy vọng bạn có thể bỏ qua cái lỗi phép tính này gianroi


Các câu hỏi tương tự
Nguyễn Nhi
Xem chi tiết
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Xem chi tiết
Kim Jeese
Xem chi tiết