tìm giá trị nhỏ nhất của biểu thức \(P=x^4-2x^2-3\left|x^2-1\right|-9\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của biểu thức:
A = \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
Cho biểu thức \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
a/ Rút gọn biểu thức A
b/ Tìm giá trị lớn nhất - nhỏ nhất của A
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
1) Giải phương trình
\(x^2\)\(+2x+1=\left(x+2\right)\sqrt{x^2+1}\)
2) Tìm giá trị nhỏ nhất của biểu thức P=\(\sqrt{x^2-2x+13}+4\sqrt{x-3}\)
1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)
\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)
\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)
Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)
2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)
Ta có :
\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)
\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)
\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)
Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ai lm đc câu nào thì giúp mk với , cảm ơn !!
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Bài 1 : Tìm Giá trị nhỏ nhất của các biểu thức sau
A(x)= \(2x^2\) - 8x +1
B(x)= \(\left(x-3\right)^2\) + \(\left(x-1\right)^2\)
a: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7>=-7\)
Dấu = xảy ra khi x=2
b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)
\(=x^2-6x+9+x^2-2x+1\)
\(=2x^2-8x+10\)
\(=2x^2-8x+8+2\)
\(=2\left(x-2\right)^2+2>=2\)
Dấu = xảy ra khi x=2
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).