Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gallavich
Xem chi tiết
Akai Haruma
22 tháng 5 2021 lúc 0:26

Lời giải:

Kéo dài $BG$ cắt $AC$ tại $K$. Kẻ $KK'\perp d$

Trên $BG$ lấy trung điểm $I$. Kẻ $II'\perp d$

Vận dụng công thức đường trung bình trong hình thang ta có:

Xét hình thang $BGG'B'$ có đtb $II'$ thì:

$II'=\frac{BB'+GG'}{2}(1)$

Xét hình thang $AA'C'C$ có đường trung bình $KK'$ thì:

$KK'=\frac{AA'+CC'}{2}(2)$

Xét hình thang $II'KK'$ có đường trung bình $GG'$ thì:

$GG'=\frac{II'+KK'}{2}(3)$

Từ $(1);(2);(3)$ suy ra:

$GG'=\frac{BB'+GG'+AA'+CC'}{4}$

$\Rightarrow GG'=\frac{AA'+BB'+CC'}{3}$ 

Ta có đpcm.

Akai Haruma
22 tháng 5 2021 lúc 0:26

Hình vẽ:

Nữ hoàng sến súa là ta
Xem chi tiết
Nhi Nhí Nhảnh
Xem chi tiết
Nhi Nhí Nhảnh
27 tháng 4 2018 lúc 20:32

Ai giúp mk với ạ! Mk cảm ơn nhìu lắm!

Trần Minh Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 22:08

Gọi M là trung điểm của BC, D là chân đường phân giác kẻ từ A xuống BC

=>A,G,M thẳng hàng và A,I,D thẳng hàng

BM=CM=BC/2=7,5cm

AD là phân giác

=>BD/AB=CD/AC
=>BD/4=CD/6=15/10=1,5

=>BD=6cm

=>MD=1,5cm

IG//DM

=>IG/DM=AI/AD=2/3

=>IG=2/3DM=1cm

vo thi thanh huong
Xem chi tiết
Nigi
Xem chi tiết
Lê Hồ Trọng Tín
29 tháng 4 2019 lúc 11:54

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

Thanh Hằng Nguyễn
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
4 tháng 1 2018 lúc 19:24

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

๖ACE✪Hoàngミ★Việtツ
4 tháng 1 2018 lúc 19:37

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm

๖ACE✪Hoàngミ★Việtツ
4 tháng 1 2018 lúc 19:39

c / tự làm đi nha câu này dài t nhác làm

阮草~๖ۣۜDαɾƙ
Xem chi tiết

a) Theo định lí pytago vào tam giác ABC:
BC2=AB2+AC2
=>BC^2=9^2+12^2
=>BC^2=81+144
=>BC^2=225
=>BC^2=căn 225=15 cm.(theo giả thiết cho cũng bằng 15 cm)
Vậy tam giác ABC vuông tại A
b) Vì MH=MK mà MH vuông góc với AC, MK là tia đối của MH nên tam giác KMB vuông tại K
Xét 2 tam giác MHC và MKB có:
MH = MK theo giả thiết
MB = MC vì AM là trung tuyến ứng với với BC
góc H = góc K = 90 độ
=> 2 tam giác trên bằng nhau.(cạnh huyền-cạnh góc vuông)
=> góc KMB = góc HMC.
Mặt khác, hai góc KMB và HMC ở vị trí so le trong nên BK//HC hay BK//AC.(còn một cách cm nữa)
c) Xét hai tam giác vuông MHA và MHC có:
MH chung
MA=MC vì AM là trung tuyến ứng với BC
góc MHA = góc MHC = 90 độ
=> tam giác MHA = tam giác MHC. (cạnh huyền - cạnh góc vuông)
=> HA=HC
=> H là trung điểm của BC
=> BH là trung tuyến ứng với AC
Vì AM, BC là các trung tuyến mà hai trung tuyến này(AM, BC) cắt tại G nên G là trọng tâm của tam giác ABC

阮草~๖ۣۜDαɾƙ
12 tháng 4 2019 lúc 20:02

Ko có hình hả bn?

A B C M K H

Nguyễn Thị Diễm Huyền
Xem chi tiết

Xét tam giác GMC và tam giác DMB

BM=MC(trung tuyen AM)

MBD=MCG( CG song song với BD)

BMD=CMG( đối đỉnh)

=> tam giác GMC=tam giác DMB

=>MD=MG

Mà MD=1/3 AM nên MG=1/3 AM => AG=2/3AM(Đúng với tính chất ba đường trung tuyến của tam giác luôn rồi nè

Vậy G là trọng tâm