Cho a, b > 0 và a + b = 1. Tìm GTNN của:
\(A=\dfrac{1}{1+3ab+a^2}+\dfrac{1}{1+3ab+b^2}\)
Cho a;b>0 và a+b\(\le1\). Tìm GTNN của
C=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{4}{ab}+3ab\)
\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)
\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)
Cho a,b>0 thỏa mãn a + b + 3ab = 1. Tìm GTLN P = \(\sqrt{1-a^2}+\sqrt{1-b^2}+\dfrac{3ab}{a+b}\)
Lời giải:
$1=a+b+3ab\leq (a+b)+3.\frac{(a+b)^2}{4}$
$\Rightarrow a+b\geq \frac{2}{3}$
$\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2}{9}$
\(p=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1-(a+b)}{a+b}=\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{1}{a+b}-1\)
\(\leq \sqrt{(1-a^2+1-b^2)(1+1)}+\frac{1}{\frac{2}{3}}-1=\sqrt{2(2-a^2-b^2)}+\frac{1}{2}\)
Mà \(2-a^2-b^2\leq 2-\frac{2}{9}=\frac{16}{9}\)
Do đó:
\(P\leq \sqrt{\frac{32}{9}}+\frac{1}{2}=\frac{3+8\sqrt{2}}{6}\) và đây chính là giá trị max.
1.Cho a/b=b/c=c/a và a+b+c khác 0.CMR:
\(\dfrac{3ab}{a^2+b^2+c^2}\)
Bạn muốn chứng minh gì vậy bạn?
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
Cho a,b,c>0 thỏa mãn abc=1. Chứng minh:
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2}{3}\left[\dfrac{1}{a^3bc\left(b^2+1\right)}+\dfrac{1}{b^3ca\left(c^2+1\right)}+\dfrac{1}{c^3ab\left(a^2+1\right)}\right]\).
Cho hai số dương a,b thỏa mãn a+b=1 . Tìm Gtnn của biểu thức :
P= 1/1+3ab+a^2 + 1/1+3ab+ b^2
Áp dụng bđt AM-GM ta có
\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)
Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Cho các số nguyên dương a,b thỏa mãn a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.
Nếu \(\dfrac{1}{a}-\dfrac{1}{b}=1\) và a,b là các số thực khác 0 và 2a + 3ab -2b khác 0 .Gía trị của biểu thức \(P=\dfrac{a-2ab-b}{2a+3ab-2b}\)= ...
nếu \(\dfrac{1}{a}-\dfrac{1}{b}=1\Leftrightarrow a-b=-ab\)
\(P=\dfrac{a-b-2ab}{2\left(a-b\right)+3ab}=\dfrac{-3ab}{ab}=-3\)
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1